# 30. Derivatives

# Exercise 30.1

## 1. Question

Find the derivative of f(x) = 3x at x = 2

## Answer

Derivative of a function f(x) at any real number a is given by -

 $f'(a) = \lim_{h \to 0} \frac{f(a+h)-f(a)}{h}$  {where h is a very small positive number}

 $\therefore$  derivative of f(x) = 3x at x = 2 is given as -

$$f(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$$
  

$$\Rightarrow f(2) = \lim_{h \to 0} \frac{3(2+h) - 3 \times 2}{h}$$
  

$$\Rightarrow f(2) = \lim_{h \to 0} \frac{3h + 6 - 6}{h} = \lim_{h \to 0} \frac{3h}{h}$$
  

$$\Rightarrow f(2) = \lim_{h \to 0} 3 = 3$$

Hence,

Derivative of f(x) = 3x at x = 2 is 3

#### 2. Question

Find the derivative of  $f(x) = x^2 - 2$  at x = 10

#### Answer

Derivative of a function f(x) at any real number a is given by -

 $\mathbf{f}(\mathbf{a}) = \lim_{h \to 0} \frac{\mathbf{f}(\mathbf{a} + \mathbf{h}) - \mathbf{f}(\mathbf{a})}{h}$  {where h is a very small positive number}  $\therefore$  derivative of x<sup>2</sup> - 2 at x = 10 is given as -

$$f(10) = \lim_{h \to 0} \frac{f(10 + h) - f(10)}{h}$$
  

$$\Rightarrow f(10) = \lim_{h \to 0} \frac{(10 + h)^2 - 2 - (10^2 - 2)}{h}$$
  

$$\Rightarrow f(10) = \lim_{h \to 0} \frac{100 + h^2 + 20h - 2 - 100 + 2}{h} = \lim_{h \to 0} \frac{h^2 + 20h}{h}$$
  

$$\Rightarrow f(10) = \lim_{h \to 0} \frac{h(h + 20)}{h} = \lim_{h \to 0} (h + 20)$$
  

$$\Rightarrow f'(10) = 0 + 20 = 20$$
  
Hence,  
Derivative of  $f(x) = x^2 - 2$  at  $x = 10$  is 20

#### 3. Question

Find the derivative of f(x) = 99x at x = 100.

## Answer

Derivative of a function f(x) at any real number a is given by -

 $f'(a) = \lim_{h \to 0} \frac{f(a+h)-f(a)}{h}$  {where h is a very small positive number}

 $\therefore$  derivative of 99x at x = 100 is given as -

$$f'(100) = \lim_{h \to 0} \frac{f(100 + h) - f(100)}{h}$$
  

$$\Rightarrow f'(100) = \lim_{h \to 0} \frac{99(100 + h) - 99 \times 100}{h}$$
  

$$\Rightarrow f'(100) = \lim_{h \to 0} \frac{9900 + 99h - 9900}{h} = \lim_{h \to 0} \frac{99h}{h}$$
  

$$\Rightarrow f'(100) = \lim_{h \to 0} 99 = 99$$

Hence,

Derivative of f(x) = 99x at x = 100 is 99

## 4. Question

Find the derivative of f(x) = x at x = 1

## Answer

Derivative of a function f(x) at any real number a is given by -

 $f'(a) = \lim_{h \to 0} \frac{f(a+h)-f(a)}{h} \{ \text{where } h \text{ is a very small positive number} \}$ 

 $\therefore$  derivative of x at x = 1 is given as -

----

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$
  

$$\Rightarrow f'(1) = \lim_{h \to 0} \frac{(1+h) - 1}{h}$$
  

$$\Rightarrow f'(1) = \lim_{h \to 0} \frac{1+h-1}{h} = \lim_{h \to 0} \frac{h}{h}$$
  

$$\Rightarrow f'(1) = \lim_{h \to 0} 1 = 1$$

Hence,

Derivative of f(x) = x at x = 1 is 1

## 5. Question

Find the derivative of  $f(x) = \cos x$  at x = 0

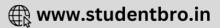
## Answer

Derivative of a function f(x) at any real number a is given by -

 $f'(a) = \lim_{h \to 0} \frac{f(a+h)-f(a)}{h} \{ \text{where } h \text{ is a very small positive number} \}$ 

 $\therefore$  derivative of cos x at x = 0 is given as -

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$
$$\Rightarrow f'(0) = \lim_{h \to 0} \frac{\cos(h) - \cos 0}{h}$$



$$\Rightarrow f'(0) = \lim_{h \to 0} \frac{\cosh - 1}{h}$$

 $\because$  we can't find the limit by direct substitution as it gives 0/0 (indeterminate form)

So we need to do few simplifications to evaluate the limit.

As we know that  $1 - \cos x = 2 \sin^2(x/2)$ 

$$\therefore f'(0) = \lim_{h \to 0} \frac{-(1 - \cos h)}{h} = -\lim_{h \to 0} \frac{2 \sin^2 \frac{h}{2}}{h}$$

Dividing the numerator and denominator by 2 to get the form  $(\sin x)/x$  to apply sandwich theorem, also multiplying h in numerator and denominator to get the required form.

$$\Rightarrow f(0) = -\lim_{h \to 0} \frac{\frac{2\sin^2 \frac{h}{2}}{\frac{2}{2}} \times h}{\frac{h^2}{2}}$$

Using algebra of limits we have -

$$\Rightarrow f(0) = -\lim_{h \to 0} \left( \frac{\sin \frac{h}{2}}{\frac{h}{2}} \right) \times \lim_{h \to 0} h$$

Use the formula:  $\lim_{x \to 0} \frac{\sin x}{x} = 1$ 

$$\therefore f'(0) = -1 \times 0 = 0$$

Hence,

Derivative of  $f(x) = \cos x$  at x = 0 is 0

#### 6. Question

Find the derivative of  $f(x) = \tan x$  at x = 0

## Answer

Derivative of a function f(x) at any real number a is given by -

 $f'(a) = \lim_{h \to 0} \frac{f(a+h)-f(a)}{h} \{ \text{where } h \text{ is a very small positive number} \}$ 

 $\therefore$  derivative of cos x at x = 0 is given as -

$$f(0) = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h}$$
  

$$\Rightarrow f(0) = \lim_{h \to 0} \frac{\tan(h) - \tan 0}{h}$$
  

$$\Rightarrow f(0) = \lim_{h \to 0} \frac{\tanh h}{h}$$

 $\because$  we can't find the limit by direct substitution as it gives 0/0 (indeterminate form)

 $\therefore \text{ Use the formula: } \lim_{x \to 0} \frac{\tan x}{x} = 1 \text{ {sandwich theorem }}$ 

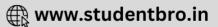
$$\therefore f'(0) = 1$$

Hence,

Derivative of  $f(x) = \tan x$  at x = 0 is 1

7 A. Question





Find the derivatives of the following functions at the indicated points :

$$\sin x \operatorname{at} x = \frac{\pi}{2}$$

#### Answer

Derivative of a function f(x) at any real number a is given by -

 $f'(a) = \lim_{h \to 0} \frac{f(a+h)-f(a)}{h} \{ \text{where } h \text{ is a very small positive number} \}$ 

 $\therefore$  derivative of sin x at x =  $\pi/2$  is given as -

$$f(\pi/2) = \lim_{h \to 0} \frac{f(\frac{\pi}{2} + h) - f(\frac{\pi}{2})}{h}$$
$$\Rightarrow f(\pi/2) = \lim_{h \to 0} \frac{\sin(\frac{\pi}{2} + h) - \sin\frac{\pi}{2}}{h}$$
$$\Rightarrow f(\pi/2) = \lim_{h \to 0} \frac{\cosh^{-1}}{h} \{ \because \sin(\pi/2 + x) = \cos x \}$$

: we can't find the limit by direct substitution as it gives 0/0 (indeterminate form)

So we need to do few simplifications to evaluate the limit.

As we know that  $1 - \cos x = 2 \sin^2(x/2)$ 

$$\therefore f'(\pi/2) = \lim_{h \to 0} \frac{-(1 - \cos h)}{h} = -\lim_{h \to 0} \frac{2\sin^2 \frac{\pi}{2}}{h}$$

Dividing the numerator and denominator by 2 to get the form  $(\sin x)/x$  to apply sandwich theorem, also multiplying h in numerator and denominator to get the required form.

}

$$\Rightarrow f(\pi/2) = -\lim_{h \to 0} \frac{\frac{2 \sin^2 \frac{h}{2}}{\frac{2}{2}}}{\frac{h^2}{2}} \times h$$

Using algebra of limits we have -

$$\Rightarrow f(\pi/2) = -\lim_{h \to 0} \left( \frac{\sin \frac{h}{2}}{\frac{h}{2}} \right) \times \lim_{h \to 0} h$$

Use the formula:  $\lim_{x \to 0} \frac{\sin x}{x} = 1$ 

$$\therefore f'(\pi/2) = -1 \times 0 = 0$$

Hence,

Derivative of  $f(x) = \sin x$  at  $x = \pi/2$  is 0

#### 7 B. Question

Find the derivatives of the following functions at the indicated points :

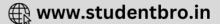
x at x = 1

#### Answer

Derivative of a function f(x) at any real number a is given by -

$$f'(a) = \lim_{h \to 0} \frac{f(a+h)-f(a)}{h} \{ \text{where } h \text{ is a very small positive number} \}$$

Get More Learning Materials Here : 🗾



 $\therefore$  derivative of x at x = 1 is given as -

----

$$f(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$
  

$$\Rightarrow f(1) = \lim_{h \to 0} \frac{(1+h) - 1}{h}$$
  

$$\Rightarrow f(1) = \lim_{h \to 0} \frac{1+h-1}{h} = \lim_{h \to 0} \frac{h}{h}$$
  

$$\Rightarrow f(1) = \lim_{h \to 0} 1 = 1$$

Hence,

Derivative of f(x) = x at x = 1 is 1

#### 7 C. Question

Find the derivatives of the following functions at the indicated points :

$$2\cos x$$
 at  $x = \frac{\pi}{2}$ 

#### Answer

Derivative of a function f(x) at any real number a is given by -

 $f(a) = \lim_{h \to 0} \frac{f(a+h)-f(a)}{h} \{ \text{where } h \text{ is a very small positive number} \}$ 

 $\therefore$  derivative of 2cos x at x =  $\pi/2$  is given as -

$$f(\pi/2) = \lim_{h \to 0} \frac{f(\frac{\pi}{2} + h) - f(\frac{\pi}{2})}{h}$$
  
$$\Rightarrow f(\pi/2) = \lim_{h \to 0} \frac{2\cos(\frac{\pi}{2} + h) - 2\cos\frac{\pi}{2}}{h}$$
  
$$\Rightarrow f(\pi/2) = \lim_{h \to 0} \frac{-2\sin h}{h} \{\because \cos(\pi/2 + x) = -\sin x\}$$

: we can't find the limit by direct substitution as it gives 0/0 (indeterminate form)

$$\Rightarrow f'(\pi/2) = -2 \lim_{h \to 0} \frac{\sinh h}{h}$$

Use the formula:  $\lim_{x \to 0} \frac{\sin x}{x} = 1$ 

$$\therefore f'(\pi/2) = -2 \times 1 = -2$$

Hence,

Derivative of  $f(x) = 2\cos x$  at  $x = \pi/2$  is -2

#### 7 D. Question

Find the derivatives of the following functions at the indicated points :

$$\sin 2x$$
 at  $x = \frac{\pi}{2}$ 

#### Answer

Derivative of a function f(x) at any real number a is given by -

 $f'(a) = \lim_{h \to 0} \frac{f(a+h)-f(a)}{h}$  {where h is a very small positive number}

Get More Learning Materials Here :

**CLICK HERE** 



 $\therefore$  derivative of sin 2x at x =  $\pi/2$  is given as -

$$f(\pi/2) = \lim_{h \to 0} \frac{f(\frac{\pi}{2} + h) - f(\frac{\pi}{2})}{h}$$

$$\Rightarrow f(\pi/2) = \lim_{h \to 0} \frac{\sin\left\{2 \times \left(\frac{\pi}{2} + h\right)\right\} - \sin 2 \times \frac{\pi}{2}}{h}$$

$$\Rightarrow f(\pi/2) = \lim_{h \to 0} \frac{\sin(\pi + 2h) - \sin \pi}{h} \{\because \sin(\pi + x) = -\sin x \& \sin \pi = 0\}$$

$$\Rightarrow f(\pi/2) = \lim_{h \to 0} \frac{-\sin 2h - 0}{h}$$

$$\Rightarrow f(\pi/2) = -\lim_{h \to 0} \frac{\sin 2h}{h}$$

: we can't find the limit by direct substitution as it gives 0/0 (indeterminate form)

We need to use sandwich theorem to evaluate the limit.

Multiplying 2 in numerator and denominator to apply the formula.

$$\Rightarrow f'(\pi/2) = -\lim_{h \to 0} \frac{\sin 2h}{2h} \times 2 = -2\lim_{h \to 0} \frac{\sin 2h}{2h}$$
  
Use the formula: 
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
$$\therefore f'(\pi/2) = -2 \times 1 = -2$$

Hence,

Derivative of  $f(x) = \sin 2x$  at  $x = \pi/2$  is -2

# Exercise 30.2

## 1 A. Question

Differentiate each of the following from first principles:

 $\frac{2}{x}$ 

## Answer

We need to find derivative of f(x) = 2/x from first principle

Derivative of a function f(x) from first principle is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \{ \text{where } h \text{ is a very small positive number} \}$ 

 $\therefore$  derivative of f(x) = 2/x is given as -

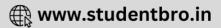
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\frac{2}{x+h} - \frac{2}{x}}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\frac{2x - 2(x+h)}{x(x+h)}}{h} = \lim_{h \to 0} \frac{2x - 2x - 2h}{h(x)(x+h)}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{-2h}{h(x)(x+h)} = -2\lim_{h \to 0} \frac{h}{h(x)(x+h)}$$





As h is cancelled and by putting h = 0 we are not getting any indeterminate form so we can evaluate the limit directly.

$$\therefore f'(x) = -2\frac{1}{x(x+0)} = -\frac{2}{x^2}$$

Hence,

Derivative of f(x) =  $2/x = -\frac{2}{v^2}$ 

## **1 B. Question**

Differentiate each of the following from first principles:

$$\frac{1}{\sqrt{x}}$$

## Answer

We need to find derivative of  $f(x) = 1/\sqrt{x}$ 

Derivative of a function f(x) from first principle is given by -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \{ \text{where } h \text{ is a very small positive number} \}$$

 $\therefore$  derivative of f(x) = 1/ $\sqrt{x}$  is given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$
  

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\frac{1}{\sqrt{x + h}} - \frac{1}{\sqrt{x}}}{h}$$
  

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\frac{\sqrt{x} - \sqrt{x + h}}{\sqrt{x}\sqrt{(x + h)}}}{h} = \lim_{h \to 0} \frac{\sqrt{x} - \sqrt{x + h}}{h\sqrt{x}\sqrt{x + h}}$$

Using algebra of limits -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sqrt{x} - \sqrt{x + h}}{h} \times \lim_{h \to 0} \frac{1}{\sqrt{x}\sqrt{x + h}}$$
$$\Rightarrow f'(x) = \frac{1}{x} \lim_{h \to 0} \frac{\sqrt{x} - \sqrt{x + h}}{h}$$

Multiplying numerator and denominator by  $\sqrt{x} + \sqrt{(x + h)}$  to rationalise the expression so that we don't get any indeterminate form after putting value of h

$$\Rightarrow f(x) = \frac{1}{x} \lim_{h \to 0} \frac{\sqrt{x} - \sqrt{x} + h}{h} \times \frac{\sqrt{x} + \sqrt{x} + h}{\sqrt{x} + \sqrt{x} + h}$$

Using  $(a + b)(a - b) = a^2 - b^2$ 

$$f'(x) = \frac{1}{x} \lim_{h \to 0} \frac{\left(\sqrt{x}\right)^2 - \left(\sqrt{x+h}\right)^2}{h} \times \frac{1}{\sqrt{x} + \sqrt{x+h}}$$

Using algebra of limits -

$$f'(x) = \frac{1}{x} \lim_{h \to 0} \frac{x - x - h}{h} \times \lim_{h \to 0} \frac{1}{\sqrt{x} + \sqrt{x} + h}$$
$$\Rightarrow f'(x) = \frac{1}{x} \times (-1) \times \frac{1}{2\sqrt{x}}$$

Get More Learning Materials Here : 📕



# 🕀 www.studentbro.in

$$\therefore f'(x) = -1 \times \frac{1}{2x\sqrt{x}} = -\frac{1}{2x\sqrt{x}}$$

Derivative of f(x) =  $1/\sqrt{x} = -\frac{1}{2x\sqrt{x}}$ 

# 1 C. Question

Differentiate each of the following from first principles:

$$\frac{1}{x^3}$$

# Answer

We need to find derivative of  $f(x) = 1/x^3$ 

Derivative of a function f(x) from first principle is given by -

$$f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 {where h is a very small positive number}

 $\therefore$  derivative of f(x) = 1/x<sup>3</sup> is given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$
  

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\frac{1}{(x + h)^3} - \frac{1}{x^3}}{h}$$
  

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\frac{x^3 - (x + h)^3}{x^3(x + h)^3}}{h} = \lim_{h \to 0} \frac{x^3 - (x + h)^3}{h(x^3)(x + h)^3}$$

Using algebra of limits -

$$\Rightarrow f(x) = \lim_{h \to 0} \frac{x^3 - (x + h)^3}{h} \times \lim_{h \to 0} \frac{1}{(x)^3 (x + h)^3}$$
$$\Rightarrow f(x) = \frac{1}{x^6} \lim_{h \to 0} \frac{x^3 - (x + h)^3}{h}$$
Using a<sup>3</sup> - b<sup>3</sup> = (a - b)(a<sup>2</sup> + ab + b<sup>2</sup>)

We have:

$$f'(x) = \frac{1}{x^6} \lim_{h \to 0} \frac{(x - x - h)(x^2 + x(x + h) + (x + h)^2)}{h}$$
  
$$\Rightarrow f'(x) = \frac{1}{x^6} \lim_{h \to 0} \frac{-h(x^2 + x(x + h) + h^2 + x^2 + 2xh)}{h}$$

As h is cancelled and by putting h = 0 we are not getting any indeterminate form so we can evaluate the limit directly.

$$\Rightarrow f(x) = -\frac{1}{x^6} \lim_{h \to 0} (x^2 + x^2 + xh + x^2 + 2xh + h^2)$$
  
$$\Rightarrow f'(x) = -\frac{1}{x^6} \lim_{h \to 0} (3x^2 + h^2 + 3xh)$$
  
$$\Rightarrow f(x) = -\frac{1}{x^6} (3x^2 + 3x(0) + 0^2) = -\frac{3x^2}{x^6} = -\frac{3}{x^4}$$

Get More Learning Materials Here : 💻



# Regional www.studentbro.in

$$\therefore f'(x) = -\frac{3}{x^4}$$

Derivative of f(x) =  $1/x^3 = -\frac{3}{x^4}$ 

## **1 D. Question**

Differentiate each of the following from first principles:

$$\frac{x^2+1}{x}$$

## Answer

We need to find derivative of  $f(x) = \frac{x^2 + 1}{x}$ 

Derivative of a function f(x) from first principle is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \text{ {where h is a very small positive number}}$ 

$$\therefore$$
 derivative of  $f(x) = \frac{x^2 + 1}{x}$  is given as -

$$f(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$
  

$$\Rightarrow f(x) = \lim_{h \to 0} \frac{\frac{(x + h)^2 + 1}{x + h} - \frac{x^2 + 1}{x}}{h}$$
  

$$\Rightarrow f(x) = \lim_{h \to 0} \frac{\frac{\{(x + h)^2 + 1\}x - (x + h)(x^2 + 1)}{x(x + h)}}{h}$$
  

$$= \lim_{h \to 0} \frac{\frac{\{(x + h)^2 + 1\}x - (x + h)(x^2 + 1)}{h}}{h(x + h)}$$

Using algebra of limits -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\{(x+h)^2 + 1\}x - (x+h)(x^2 + 1)}{h} \times \lim_{h \to 0} \frac{1}{x(x+h)}$$

$$\Rightarrow f'(x) = \frac{1}{x^2} \lim_{h \to 0} \frac{\{(x+h)^2 + 1\}x - (x+h)(x^2 + 1)}{h}$$

$$\Rightarrow f'(x) = \frac{1}{x^2} \lim_{h \to 0} \frac{\{x^2 + h^2 + 2xh + 1\}x - \{x^3 + hx^2 + x + h\}}{h}$$

$$\Rightarrow f'(x) = \frac{1}{x^2} \lim_{h \to 0} \frac{x^3 + h^2x + 2x^2h + x - x^3 - hx^2 - x - h}{h}$$

$$\Rightarrow f'(x) = \frac{1}{x^2} \lim_{h \to 0} \frac{h^2x + x^2h - h}{h}$$

$$\Rightarrow f'(x) = \frac{1}{x^2} \lim_{h \to 0} \frac{h(hx + x^2 - 1)}{h}$$

As h is cancelled and by putting h = 0 we are not getting any indeterminate form so we can evaluate the limit directly.

CLICK HERE

>>

$$\Rightarrow f'(x) = \frac{1}{x^2} \lim_{h \to 0} (hx + x^2 - 1)$$

$$\Rightarrow f'(x) = \frac{1}{x^2} (0 \times x + x^2 - 1) = \frac{x^2 - 1}{x^2} = 1 - \frac{1}{x^2}$$
  
$$\therefore f'(x) = 1 - \frac{1}{x^2}$$

Derivative of f(x) =  $\frac{x^2 + 1}{x} = 1 - \frac{1}{x^2}$ 

# 1 E. Question

Differentiate each of the following from first principles:

$$\frac{x^2-1}{x}$$

#### Answer

We need to find derivative of  $f(x) = \frac{x^2 - 1}{x}$ 

Derivative of a function f(x) from first principle is given by -

$$f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \{ \text{where } h \text{ is a very small positive number} \}$$

 $\therefore$  derivative of f(x) =  $\frac{x^2 - 1}{x}$  is given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$
  

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\frac{(x + h)^2 - 1}{x + h} - \frac{x^2 - 1}{x}}{h}$$
  

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\frac{\{(x + h)^2 - 1\}x - (x + h)(x^2 - 1)}{x(x + h)}}{h}$$
  

$$= \lim_{h \to 0} \frac{\{(x + h)^2 - 1\}x - (x + h)(x^2 - 1)}{h(x + h)}$$

Using algebra of limits -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\{(x+h)^2 - 1\}x - (x+h)(x^2 - 1)}{h} \times \lim_{h \to 0} \frac{1}{x(x+h)}$$

$$\Rightarrow f'(x) = \frac{1}{x^2} \lim_{h \to 0} \frac{\{(x+h)^2 - 1\}x - (x+h)(x^2 - 1)}{h}$$

$$\Rightarrow f'(x) = \frac{1}{x^2} \lim_{h \to 0} \frac{\{x^2 + h^2 + 2xh - 1\}x - \{x^3 + hx^2 - x - h\}}{h}$$

$$\Rightarrow f'(x) = \frac{1}{x^2} \lim_{h \to 0} \frac{x^3 + h^2x + 2x^2h - x - x^3 - hx^2 + x + h}{h}$$

$$\Rightarrow f'(x) = \frac{1}{x^2} \lim_{h \to 0} \frac{h^2x + x^2h + h}{h}$$

$$\Rightarrow f'(x) = \frac{1}{x^2} \lim_{h \to 0} \frac{h(hx + x^2 + 1)}{h}$$

As h is cancelled and by putting h = 0 we are not getting any indeterminate form so we can evaluate the limit directly.

CLICK HERE

( >>

$$\Rightarrow f'(x) = \frac{1}{x^2} \lim_{h \to 0} (hx + x^2 + 1)$$
  
$$\Rightarrow f'(x) = \frac{1}{x^2} (0 \times x + x^2 + 1) = \frac{x^2 + 1}{x^2} = 1 + \frac{1}{x^2}$$
  
$$\therefore f'(x) = 1 + \frac{1}{x^2}$$

Derivative of f(x) =  $\frac{x^2 + 1}{x} = 1 + \frac{1}{x^2}$ 

## 1 F. Question

Differentiate each of the following from first principles:

 $\frac{x+1}{x+2}$ 

#### Answer

We need to find derivative of  $f(x) = \frac{x+1}{x+2}$ 

Derivative of a function f(x) from first principle is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \{ \text{where } h \text{ is a very small positive number} \}$ 

 $\therefore$  derivative of f(x) =  $\frac{x+1}{x+2}$  is given as -

$$f(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$
  

$$\Rightarrow f(x) = \lim_{h \to 0} \frac{\frac{(x + h) + 1}{x + h + 2} - \frac{x + 1}{x + 2}}{h}$$
  

$$\Rightarrow f(x) = \lim_{h \to 0} \frac{\frac{\{x + h + 1\}\{x + 2\} - (x + h + 2)(x + 1)\}}{(x + 2)(x + h + 2)}}{h}$$
  

$$= \lim_{h \to 0} \frac{\{x + h + 1\}\{x + 2\} - (x + h + 2)(x + 1)\}}{h(x + 2)(x + h + 2)}$$

Using algebra of limits -

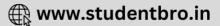
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\{x + h + 1\}\{x + 2\} - (x + h + 2)(x + 1)}{h} \\ \times \lim_{h \to 0} \frac{1}{(x + 2)(x + h + 2)}$$

$$\Rightarrow f'(x) = \frac{1}{(x + 2)^2} \lim_{h \to 0} \frac{\{x + h + 1\}\{x + 2\} - (x + h + 2)(x + 1)}{h}$$

$$\Rightarrow f'(x) = \frac{1}{(x + 2)^2} \lim_{h \to 0} \frac{x^2 + 2x + hx + 2h + x + 2 - x^2 - x - hx - h - 2x - 2}{h}$$

$$\Rightarrow f'(x) = \frac{1}{(x + 2)^2} \lim_{h \to 0} \frac{h}{h}$$

$$\Rightarrow f'(x) = \frac{1}{(x + 2)^2} \lim_{h \to 0} \frac{h}{h}$$



$$\therefore \mathbf{f}(\mathbf{x}) = \frac{1}{(\mathbf{x}+2)^2}$$

Derivative of f(x) =  $\frac{x+1}{x+2} = \frac{1}{(x+2)^2}$ 

## **1 G. Question**

Differentiate each of the following from first principles:

 $\frac{x+2}{3x+5}$ 

## Answer

We need to find derivative of  $f(x) = \frac{x+2}{3x+5}$ 

Derivative of a function f(x) is given by -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 {where h is a very small positive number}  
 $\therefore$  derivative of  $f(x) = \frac{x+2}{3x+5}$  is given as –

$$f(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$

$$\Rightarrow f(x) = \lim_{h \to 0} \frac{\frac{(x + h) + 2}{3(x + h) + 5} - \frac{x + 2}{3x + 5}}{h}$$

$$\Rightarrow f(x) = \lim_{h \to 0} \frac{\frac{\{x + h + 2\}\{3x + 5\} - (3x + 3h + 5)(x + 2)}{(3x + 5)(3x + 3h + 5)}}{h}$$

$$\Rightarrow f(x) = \lim_{h \to 0} \frac{\{x + h + 2\}\{3x + 5\} - (3x + 3h + 5)(x + 2)}{h}$$

Using algebra of limits -

$$\Rightarrow f(x) = \lim_{h \to 0} \frac{\{x + h + 2\}\{3x + 5\} - (3x + 3h + 5)(x + 2)}{h} \\ \times \lim_{h \to 0} \frac{1}{(3x + 5)(3x + 3h + 5)}$$

$$\Rightarrow f(x) = \frac{1}{(3x + 5)^2} \lim_{h \to 0} \frac{\{x + h + 2\}\{3x + 5\} - (3x + 3h + 5)(x + 2)}{h}$$

$$\Rightarrow f(x) = \frac{1}{(3x + 5)^2} \lim_{h \to 0} \frac{3x^2 + 5x + 3hx + 5h + 6x + 10 - 3x^2 - 6x - 3hx - 6h - 5x - 10}{h}$$

$$\Rightarrow f(x) = \frac{1}{(3x + 5)^2} \lim_{h \to 0} \frac{5h - 6h}{h}$$

$$\Rightarrow f(x) = \frac{1}{(3x + 5)^2} \lim_{h \to 0} \frac{-h}{h}$$

$$\Rightarrow f(x) = \frac{1}{(3x + 5)^2} \lim_{h \to 0} -1$$

$$\therefore f(x) = \frac{-1}{(3x + 5)^2}$$

Derivative of f(x) =  $\frac{x+2}{3x+5} = \frac{-1}{(3x+5)^2}$ 

#### 1 H. Question

Differentiate each of the following from first principles:

## kx<sup>n</sup>

#### Answer

We need to find the derivative of  $f(x) = kx^n$ 

Derivative of a function f(x) from first principle is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$  {where h is a very small positive number}

 $\therefore$  derivative of f(x) = kx<sup>n</sup> is given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$
  

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{k(x + h)^n - kx^n}{h}$$
  

$$\Rightarrow f'(x) = k \lim_{h \to 0} \frac{(x + h)^n - x^n}{h}$$

Using binomial expansion we have -

$$(x + h)^{n} = {}^{n}C_{0} x^{n} + {}^{n}C_{1} x^{n-1}h + {}^{n}C_{2} x^{n-2}h^{2} + \dots + {}^{n}C_{n}h^{n}$$
  

$$\therefore f'(x) = k \lim_{h \to 0} \frac{x^{n} + {}^{n}C_{1}x^{n-1}h + {}^{n}C_{2}x^{n-2} + \dots + {}^{n}C_{n}h^{n} - x^{n}}{h}$$
  

$$\Rightarrow f'(x) = k \lim_{h \to 0} \frac{{}^{n}C_{1}x^{n-1}h + {}^{n}C_{2}x^{n-2}h^{2} + \dots + {}^{n}C_{n}h^{n}}{h}$$

Take h common -

$$\Rightarrow f'(x) = k \lim_{h \to 0} \frac{h(+{}^{n}C_{1}x^{n-1} + {}^{n}C_{2}x^{n-2}h + ... + {}^{n}C_{n}h^{n-1})}{h}$$
  
$$\Rightarrow f'(x) = k \lim_{h \to 0} (+{}^{n}C_{1}x^{n-1} + {}^{n}C_{2}x^{n-2}h + ... + {}^{n}C_{n}h^{n-1})$$

As there is no more indeterminate, so put value of h to get the limit.

$$\Rightarrow f'(x) = k \lim_{h \to 0} (+{}^{n}C_{1}x^{n-1} + {}^{n}C_{2}x^{n-2}0 + \dots + {}^{n}C_{n}0^{n-1})$$
  
$$\Rightarrow f'(x) = k {}^{n}C_{1}x^{n-1} = k nx^{n-1}$$

Hence,

Derivative of  $f(x) = kx^n$  is  $k nx^{n-1}$ 

## 1 I. Question

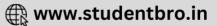
Differentiate each of the following from first principles:

$$\frac{1}{\sqrt{3-x}}$$

#### Answer

We need to find derivative of  $f(x) = 1/\sqrt{3-x}$ 





Derivative of a function f(x) from first principle is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$  {where h is a very small positive number}

 $\therefore$  derivative of f(x) = 1/ $\!\!\sqrt{(3-x)}$  is given as –

$$f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$
  

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\frac{1}{\sqrt{3 - (x + h)}} - \frac{1}{\sqrt{3 - x}}}{h}$$
  

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\frac{\sqrt{3 - x} - \sqrt{3 - x - h}}{h}}{\frac{\sqrt{3 - x} \sqrt{(3 - x - h)}}{h}} = \lim_{h \to 0} \frac{\sqrt{3 - x} - \sqrt{3 - x - h}}{h\sqrt{3 - x}\sqrt{3 - x - h}}$$

Using algebra of limits -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sqrt{3-x} - \sqrt{3-x-h}}{h} \times \lim_{h \to 0} \frac{1}{\sqrt{3-x}\sqrt{3-x-h}}$$
$$\Rightarrow f'(x) = \frac{1}{(3-x)} \lim_{h \to 0} \frac{\sqrt{3-x} - \sqrt{3-x-h}}{h}$$

Multiplying numerator and denominator by  $\sqrt{(3 - x)} + \sqrt{(3 - x - h)}$  to rationalise the expression so that we don't get any indeterminate form after putting value of h

$$\Rightarrow f(x) = \frac{1}{(3-x)} \lim_{h \to 0} \frac{\sqrt{3-x} - \sqrt{3-x-h}}{h} \times \frac{\sqrt{3-x} + \sqrt{3-x-h}}{\sqrt{3-x} + \sqrt{3-x-h}}$$

Using  $(a + b)(a - b) = a^2 - b^2$ 

$$f'(x) = \frac{1}{3-x} \lim_{h \to 0} \frac{\left(\sqrt{3-x}\right)^2 - \left(\sqrt{3-x-h}\right)^2}{h} \times \frac{1}{\sqrt{3-x} + \sqrt{3-x-h}}$$

Using algebra of limits -

$$f(x) = \frac{1}{3-x} \lim_{h \to 0} \frac{3-x-(3-x-h)}{h} \times \lim_{h \to 0} \frac{1}{\sqrt{3-x} + \sqrt{3-x-h}}$$
  

$$\Rightarrow f(x) = \frac{1}{(3-x)} \times (1) \times \frac{1}{2\sqrt{3-x}}$$
  

$$\therefore f(x) = 1 \times \frac{1}{2(3-x)\sqrt{3-x}} = \frac{1}{2(3-x)\sqrt{3-x}}$$

Hence,

Derivative of 
$$\left(f(x) = \frac{1}{\sqrt{x}}\right) = \frac{1}{2(3-x)\sqrt{3-x}}$$

## 1 J. Question

Differentiate each of the following from first principles:

$$x^{2} + x + 3$$

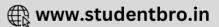
#### Answer

We need to find the derivative of  $f(x) = x^2 + x + 3$ 

Derivative of a function f(x) from first principle is given by -

Get More Learning Materials Here : 📕

CLICK HERE



 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where h is a very small positive number}}$ 

 $\therefore$  derivative of f(x) = x<sup>2</sup> + x + 3 is given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
  

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{(x+h)^2 + (x+h) + 3 - (x^2 + x + 3)}{h}$$
  
Using  $(a + b)^2 = a^2 + 2ab + b^2$   

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 + (x+h) + 3 - (x^2 + x + 3)}{h}$$

 $\Rightarrow f'(x) = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 + (x+h) + 3 - (x^2 + x)}{h}$  $\Rightarrow f'(x) = \lim_{h \to 0} \frac{2xh + h^2 + h}{h}$ 

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{2xh + h + r}{h}$$

Take h common -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{h(2x+1+h)}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} (2x+h+1)$$

As there is no more indeterminate, so put value of h to get the limit.

$$\Rightarrow f'(x) = (2x + 0 + 1)$$

$$\Rightarrow f'(x) = 2x + 1 = 2x + 1$$

Hence,

Derivative of  $f(x) = x^2 + x + 3$  is (2x + 1)

# **1 K. Question**

Differentiate each of the following from first principles:

 $(x + 2)^3$ 

# Answer

We need to find the derivative of  $f(x) = (x + 2)^3$ 

Derivative of a function f(x) from first principle is given by -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \{ \text{where } h \text{ is a very small positive number} \}$$

 $\therefore$  derivative of f(x) = (x + 2)<sup>3</sup> is given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{(x+2+h)^3 - (x+2)^3}{h}$$
Using  $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ 

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{(x+h+2-x-2)((x+h+2)^2 + (x+h+2)(x+2) + (x+2)^2)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{(h)\{(x+h+2)^2 + (x+h+2)(x+2) + (x+2)^2\}}{h}$$
As h is consolited, so there is no more indeterminate form

As h is cancelled, so there is no more indeterminate form possible if we put value of h = 0.

So, evaluate the limit by putting h = 0

$$\Rightarrow f'(x) = \lim_{h \to 0} \{ (x + h + 2)^2 + (x + h + 2)(x + 2) + (x + 2)^2 \}$$





 $\Rightarrow f'(x) = (x + 0 + 2)^{2} + (x + 2)(x + 2) + (x + 2)^{2}$  $\Rightarrow f'(x) = 3 (x + 2)^{2}$ 

 $\Rightarrow f'(x) = 3 (x + 2)^2$ 

Hence,

Derivative of  $f(x) = (x + 2)^3$  is  $3(x + 2)^2$ 

# 1 L. Question

Differentiate each of the following from first principles:

 $x^3 + 4x^2 + 3x + 2$ 

# Answer

We need to find the derivative of  $f(x) = x^3 + 4x^2 + 3x + 2$ 

Derivative of a function f(x) from first principle is given by -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where $h$ is a very small positive number}}$$

$$\therefore$$
 derivative of f(x) = x<sup>3</sup> + 4x<sup>2</sup> + 3x + 2is given as -

$$\begin{aligned} f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{(x+h)^3 + 4(x+h)^2 + 3(x+h) + 2 - (x^3 + 4x^2 + 3x + 2)}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{(x+h)\{(x+h)^2 + 4(x+h) + 3\} + 2 - x^3 - 4x^2 - 3x - 2}{h} \\ \text{Using } (a + b)^2 &= a^2 + 2ab + b^2 \text{, we have } - \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{(x+h)\{x^2 + 2xh + h^2 + 4x + 4h + 3\} - x^3 - 4x^2 - 3x}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + 4x^2 + 8hx + 3x + 3h + h^3 + 4h^2 - x^3 - 4x^2 - 3x}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{3x^2h + 3xh^2 + 8hx + 3h + h^3 + 4h^2}{h} \end{aligned}$$

Take h common -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{h(3x^2 + 3xh + 8x + 3 + h^2 + 4h)}{h}$$

As h is cancelled, so there is no more indeterminate form possible if we put value of h = 0. So, evaluate the limit by putting h = 0

$$\Rightarrow f'(x) = \lim_{h \to 0} (3x^2 + 3xh + 8x + 3 + h^2 + 4h)$$
  
$$\Rightarrow f'(x) = 3x^2 + 3x(0) + 8x + 3 + 0^2 + 4(0)$$
  
$$\Rightarrow f'(x) = 3x^2 + 8x + 3$$
  
Hence,

Derivative of  $f(x) = x^3 + 4x^2 + 3x + 2$  is  $3x^2 + 8x + 3$ 

# 1 M. Question

Differentiate each of the following from first principles:

 $(x^2 + 1)(x - 5)$ 



#### Answer

We need to find the derivative of  $f(x) = (x^2 + 1)(x - 5)$ 

Derivative of a function f(x) from first principle is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \text{ {where h is a very small positive number}}$ 

 $\therefore$  derivative of f(x) = (x<sup>2</sup> + 1)(x - 5) is given as -

$$\begin{aligned} f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{\{(x+h)^2 + 1\}\{x+h-5\} - (x^2+1)(x-5)}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{\{(x+h)^3 + x+h-5(x+h)^2 - 5\} - (x^3 - 5x^2 + x - 5)}{h} \end{aligned}$$

Using  $(a + b)^2 = a^2 + 2ab + b^2$  and  $(a + b)^3 = a^3 + 3ab(a + b) + b^3$  we have -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\{x^3 + 3x^2h + 3h^2x + h^3 + x + h - 5x^2 - 10hx - 5h^2 - 5\} - (x^3 - 5x^2 + x - 5)}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\{3x^2h + 3h^2x + h^3 + h - 10hx - 5h^2\}}{h}$$

Take h common -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{h\{3x^2 + 3hx + h^2 + 1 - 10x - 5h\}}{h}$$

As h is cancelled, so there is no more indeterminate form possible if we put value of h = 0

$$\therefore f'(x) = \lim_{h \to 0} \{3x^2 + 3hx + h^2 + 1 - 10x - 5h\}$$

So, evaluate the limit by putting h = 0

$$\Rightarrow f'(x) = 3x^2 + 3(0)x + 0^2 + 1 - 10x - 5(0)$$

$$\Rightarrow f'(x) = 3x^2 - 10x + 1$$

Hence,

Derivative of  $f(x) = (x^2 + 1)(x - 5)$  is  $3x^2 - 10x + 1$ 

## **1 N. Question**

Differentiate each of the following from first principles:

$$\sqrt{2x^2 + 1}$$

#### Answer

We need to find derivative of  $f(x) = \sqrt{2x^2 + 1}$ 

Derivative of a function f(x) from first principle is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$  {where h is a very small positive number}

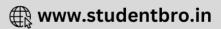
 $\therefore$  derivative of f(x) =  $\sqrt{(2x^2 + 1)}$  is given as –

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sqrt{2(x+h)^2 + 1} - \sqrt{2x^2 + 1}}{h}$$

As the above limit can't be evaluated by putting the value of h because it takes 0/0 (indeterminate form)

Get More Learning Materials Here : 📕

CLICK HERE



 $\therefore$  multiplying denominator and numerator by  $\sqrt{2(x + h)^2 + 1} + \sqrt{2x^2 + 1}$  to eliminate the indeterminate form.

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sqrt{2(x+h)^2 + 1} - \sqrt{2x^2 + 1}}{h} \times \frac{\sqrt{2(x+h)^2 + 1} + \sqrt{2x^2 + 1}}{\sqrt{2(x+h)^2 + 1} + \sqrt{2x^2 + 1}}$$

Using algebra of limits &  $a^2 - b^2 = (a + b)(a - b)$ , we have -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\left(\sqrt{2(x+h)^2 + 1}\right)^2 - \left(\sqrt{2x^2 + 1}\right)^2}{h} \times \lim_{h \to 0} \frac{1}{\sqrt{2(x+h)^2 + 1} + \sqrt{2x^2 + 1}}{\frac{1}{2\sqrt{2x^2 + 1}} \lim_{h \to 0} \frac{2(x+h)^2 + 1 - 2x^2 - 1}{h}}{h}$$
$$\Rightarrow f'(x) = \frac{2}{2\sqrt{2x^2 + 1}} \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

Using  $a^2 - b^2 = (a + b)(a - b)$ , we have -

$$\Rightarrow f'(x) = \frac{2}{2\sqrt{2x^2 + 1}} \lim_{h \to 0} \frac{(x + h - x)(x + h + x)}{h}$$
$$\Rightarrow f'(x) = \frac{1}{\sqrt{2x^2 + 1}} \lim_{h \to 0} \frac{h(2x + h)}{h}$$
$$\Rightarrow f'(x) = \frac{1}{\sqrt{2x^2 + 1}} \lim_{h \to 0} (2x + h)$$

Evaluating the limit by putting h = 0

$$\therefore f'(x) = \frac{1}{\sqrt{2x^2 + 1}} (2x + 0)$$
$$\therefore f'(x) = \frac{2x}{\sqrt{2x^2 + 1}}$$

Hence,

Derivative of f(x) =  $\sqrt{(2x^2 + 1)} = \frac{2x}{\sqrt{2x^2 + 1}}$ 

## **1 O. Question**

Differentiate each of the following from first principles:

 $\frac{2x+3}{x-2}$ 

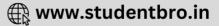
## Answer

We need to find derivative of  $f(x) = \frac{2x+3}{x-2}$ 

Derivative of a function f(x) from first principle is given by -

$$\begin{aligned} f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \{ \text{where } h \text{ is a very small positive number} \} \\ \therefore \text{ derivative of } f(x) &= \frac{2x+3}{x-2} \text{ is given as } - \\ f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{\frac{2(x+h) + 3}{x-2} - \frac{2x+3}{x-2}}{x-2} \end{aligned}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\frac{\{2x+2h+3\}\{x-2\}-(x+h-2)(2x+3)\}}{(x-2)(x+h-2)}}{h}$$



$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\{2x + 2h + 3\}\{x - 2\} - (x + h - 2)(2x + 3)}{h(x - 2)(x + h - 2)}$$

Using algebra of limits -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\{2x + 2h + 3\}\{x - 2\} - (x + h - 2)(2x + 3)}{h} \times \lim_{h \to 0} \frac{1}{(x - 2)(x + h - 2)}$$

$$\Rightarrow f'(x) = \frac{1}{(x - 2)^2} \lim_{h \to 0} \frac{\{2x + 2h + 3\}\{x - 2\} - (x + h - 2)(2x + 3)}{h}$$

$$\Rightarrow f'(x) = \frac{1}{(x - 2)^2} \lim_{h \to 0} \frac{2x^2 - 4x + 2hx - 4h + 3x - 6 - 2x^2 - 3x - 2hx - 3h + 4x + 6}{h}$$

$$\Rightarrow f'(x) = \frac{1}{(x - 2)^2} \lim_{h \to 0} \frac{-7h}{h}$$

$$\Rightarrow f'(x) = \frac{1}{(x - 2)^2} \lim_{h \to 0} \frac{-7h}{h}$$

$$\Rightarrow f'(x) = -\frac{7}{(x - 2)^2}$$

Hence,

Derivative of f(x) =  $\frac{2x+3}{x-2} = -\frac{7}{(x-2)^2}$ 

## 2 A. Question

Differentiate the following from first principle.

e <sup>- x</sup>

#### Answer

We need to find derivative of  $f(x) = e^{-x}$ 

Derivative of a function f(x) is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where $h$ is a very small positive number}}$ 

 $\therefore$  derivative of f(x) = e<sup>-x</sup> is given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{e^{-(x+h)} - e^{-x}}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{e^{-x} e^{-h} - e^{-x}}{h}$$

Taking e <sup>- x</sup> common, we have -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{e^{-x}(e^{-h}-1)}{h}$$

Using algebra of limits -

$$\Rightarrow f'(x) = \lim_{h \to 0} e^{-x} \times \lim_{h \to 0} \frac{e^{-h} - 1}{h}$$

As one of the limits  $\lim_{h \to 0} \frac{e^{-h}-1}{h}$  can't be evaluated by directly putting the value of h as it will take 0/0 form.

So we need to take steps to find its value.

$$\Rightarrow f'(x) = \lim_{h \to 0} e^{-x} \times \lim_{h \to 0} \frac{e^{-h} - 1}{-h} \times (-1)$$

Use the formula:  $\lim_{x \to 0} \frac{e^x - 1}{x} = \log_e e = 1$ 



 $\Rightarrow$  f'(x) = e<sup>-x</sup> × (-1)

 $\Rightarrow$  f'(x) = - e<sup>-x</sup>

Hence,

Derivative of  $f(x) = e^{-x} = -e^{-x}$ 

# 2 B. Question

Differentiate the following from first principle.

e<sup>3x</sup>

## Answer

We need to find derivative of  $f(x) = e^{3x}$ 

Derivative of a function f(x) is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where $h$ is a very small positive number}}$ 

 $\therefore$  derivative of f(x) =  $e^{3x}$  is given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{e^{3(x+h)} - e^{3x}}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{e^{3x} e^{3h} - e^{3x}}{h}$$

Taking e - x common, we have -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{e^{3x}(e^{3h}-1)}{h}$$

Using algebra of limits -

$$\Rightarrow f'(x) = \lim_{h \to 0} e^{3x} \times \lim_{h \to 0} \frac{e^{3h-1}}{h}$$

As one of the limits  $\lim_{h \to 0} \frac{e^{ah}-1}{h}$  can't be evaluated by directly putting the value of h as it will take 0/0 form.

So we need to take steps to find its value.

$$\Rightarrow f'(x) = \lim_{h \to 0} e^{3x} \times \lim_{h \to 0} \frac{e^{3h} - 1}{3h} \times 3$$
  
Use the formula: 
$$\lim_{x \to 0} \frac{e^{x} - 1}{x} = \log_{e} e = 1$$
$$\Rightarrow f'(x) = e^{3x} \times (3)$$
$$\Rightarrow f'(x) = 3e^{3x}$$

Hence,

Derivative of  $f(x) = e^{3x} = 3e^{3x}$ 

# 2 C. Question

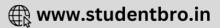
Differentiate the following from first principle.

e<sup>ax + b</sup>

# Answer

We need to find derivative of  $f(x) = e^{ax + b}$ 





Derivative of a function f(x) is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$  {where h is a very small positive number}

 $\therefore$  derivative of f(x) = e<sup>ax + b</sup> is given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{e^{a(x+h) + b} - e^{ax+b}}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{e^{ax+b} e^{ah} - e^{ax+b}}{h}$$

Taking e<sup>ax + b</sup> common, we have -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{e^{ax+b}(e^{ah}-1)}{h}$$

Using algebra of limits -

$$\Rightarrow f'(x) = \lim_{h \to 0} e^{ax+b} \times \lim_{h \to 0} \frac{e^{ah}-1}{h}$$

As one of the limits  $\lim_{h \to 0} \frac{e^{ah}-1}{h}$  can't be evaluated by directly putting the value of h as it will take 0/0 form.

So we need to take steps to find its value.

$$\Rightarrow f'(x) = \lim_{h \to 0} e^{ax+b} \times \lim_{h \to 0} \frac{e^{ah}-1}{ah} \times a$$

Use the formula:  $\lim_{x \to 0} \frac{e^x - 1}{x} = \log_e e = 1$ 

$$\Rightarrow$$
 f'(x) = e<sup>ax + b</sup> × (a)

$$\Rightarrow$$
 f'(x) = ae<sup>ax + b</sup>

Hence,

Derivative of  $f(x) = e^{ax + b} = ae^{ax + b}$ 

## 2 D. Question

Differentiate the following from first principle.

xe<sup>x</sup>

## Answer

We need to find derivative of  $f(x) = xe^{x}$ 

Derivative of a function f(x) is given by -

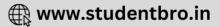
 $f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}$  {where h is a very small positive number}

 $\therefore$  derivative of f(x) = xe<sup>x</sup> is given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{(x+h)e^{(x+h)} - xe^x}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{he^{x+h} + xe^{x+h} - xe^x}{h}$$

Using algebra of limits, we have -





$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{he^{x+h}}{h} + \lim_{h \to 0} \frac{x(e^{x+h} - e^x)}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} e^{x+h} + \lim_{h \to 0} \frac{xe^x(e^h - 1)}{h}$$

Again Using algebra of limits, we have -

 $\Rightarrow f'(x) = e^{x+0} + \lim_{h \to 0} \frac{(e^{h}-1)}{h} \times \lim_{h \to 0} xe^{x}$ Use the formula:  $\lim_{x \to 0} \frac{e^{x}-1}{x} = \log_{e} e = 1$  $\Rightarrow f'(x) = e^{x} + xe^{x}$  $\Rightarrow f'(x) = e^{x}(x+1)$ 

Hence,

Derivative of  $f(x) = xe^x = e^x(x + 1)$ 

#### 2 E. Question

Differentiate the following from first principle.

-X

## Answer

We need to find derivative of f(x) = -x

Derivative of a function f(x) is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where $h$ is a very small positive number}}$ 

 $\therefore$  derivative of f(x) = - xis given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
  

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{-(x+h) - (-x)}{h}$$
  

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{-x - h + x}{h}$$
  

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{-h}{h} = \lim_{h \to 0} -1$$
  

$$\therefore f'(x) = -1$$

Hence,

Derivative of f(x) = -x = -1

#### 2 F. Question

Differentiate the following from first principle.

(-x) <sup>-1</sup>

#### Answer

We need to find derivative of  $f(x) = (-x)^{-1} = -1/x$ 

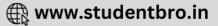
Derivative of a function f(x) is given by -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \{ \text{where } h \text{ is a very small positive number} \}$$

 $\therefore$  derivative of f(x) = - 1/x is given as -

Get More Learning Materials Here :

С



$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
  

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\frac{-1}{x+h} - \left(-\frac{1}{x}\right)}{h} = \lim_{h \to 0} \frac{\frac{-1}{x+h} + \frac{1}{x}}{h}$$
  

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\frac{-x + (x+h)}{h}}{h} = \lim_{h \to 0} \frac{x - x + h}{h(x)(x+h)}$$
  

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{h}{h(x)(x+h)} = \lim_{h \to 0} \frac{1}{(x)(x+h)}$$

As h is cancelled and by putting h = 0 we are not getting any indeterminate form so we can evaluate the limit directly.

$$\therefore f'(x) = \frac{1}{x(x+0)} = \frac{1}{x^2}$$

Hence,

Derivative of  $f(x) = (-x)^{-1} = \frac{1}{x^2}$ 

## 2 G. Question

Differentiate the following from first principle.

sin(x + 1)

# Answer

We need to find derivative of  $f(x) = \sin (x + 1)$ 

Derivative of a function f(x) is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where h is a very small positive number}}$ 

 $\therefore$  derivative of f(x) = sin (x + 1) is given as -

$$\begin{aligned} f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{\sin(x+1+h) - \sin(x+1)}{h} \end{aligned}$$

We can't evaluate the limits at this stage only as on putting value it will take 0/0 form. So, we need to do little modifications.

Use:  $\sin A - \sin B = 2 \cos ((A + B)/2) \sin ((A - B)/2)$ 

$$\dot{f}'(x) = \lim_{h \to 0} \frac{2 \cos\left(\frac{2x+2+h}{2}\right) \sin\left(\frac{h}{2}\right)}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\cos\left(x+1+\frac{h}{2}\right) \sin\left(\frac{h}{2}\right)}{\frac{h}{2}}$$

Using algebra of limits -

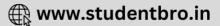
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \times \lim_{h \to 0} \cos\left(x + 1 + \frac{h}{2}\right)$$

Use the formula –  $\lim_{x \to 0} \frac{\sin x}{x} = 1$ 

$$\therefore f'(x) = 1 \times \lim_{h \to 0} \cos\left(x + 1 + \frac{h}{2}\right)$$

Put the value of h to evaluate the limit -

$$\therefore$$
 f'(x) = cos (x + 1 + 0) = cos (x + 1)



Derivative of  $f(x) = \sin (x + 1) = \cos (x + 1)$ 

## 2 H. Question

Differentiate the following from first principle.

$$\cos\left(x-\frac{\pi}{8}\right)$$

## Answer

We need to find derivative of  $f(x) = \cos(x - \pi/8)$ 

Derivative of a function f(x) is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where $h$ is a very small positive number}}$ 

 $\therefore$  derivative of f(x) = cos (x -  $\pi/8$ ) is given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\cos\left(x - \frac{\pi}{s} + h\right) - \cos\left(x - \frac{\pi}{s}\right)}{h}$$

We can't evaluate the limits at this stage only as on putting value it will take 0/0 form. So, we need to do little modifications.

Use:  $\cos A - \cos B = -2 \sin ((A + B)/2) \sin ((A - B)/2)$ 

Using algebra of limits -

$$\Rightarrow f'(x) = -1 \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \times \lim_{h \to 0} \sin\left(x - \frac{\pi}{8} + \frac{h}{2}\right)$$

Use the formula -  $\lim_{x \to 0} \frac{\sin x}{x} = 1$ 

$$\therefore f'(x) = -1 \times \lim_{h \to 0} \sin\left(x - \frac{\pi}{8} + \frac{h}{2}\right)$$

Put the value of h to evaluate the limit -

$$\therefore f'(x) = -\sin(x - \pi/8 + 0) = -\sin(x - \pi/8)$$

Hence,

Derivative of  $f(x) = \cos (x - \pi/8) = -\sin (x - \pi/8)$ 

#### 2 I. Question

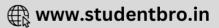
Differentiate the following from first principle.

x sin x

#### Answer

We need to find derivative of  $f(x) = x \sin x$ 

Derivative of a function f(x) is given by -



 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where h is a very small positive number}}$ 

 $\therefore$  derivative of f(x) = x sin x is given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{(x+h)\sin(x+h) - x\sin x}{h}$$
$$= f'(x) = \lim_{h \to 0} \frac{\sin(x+h) + x\sin(x+h) - x\sin x}{h}$$

 $\Rightarrow f'(x) = \lim_{h \to 0} \frac{\operatorname{nsin} (x+n) + \operatorname{nsin} (x+n) - x}{h}$ 

Using algebra of limits, we have -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{h \sin(x+h)}{h} + \lim_{h \to 0} \frac{x \sin(x+h) - x \sin x}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \sin(x+h) + \lim_{h \to 0} \frac{x (\sin(x+h) - \sin x)}{h}$$

Using algebra of limits we have -

$$\therefore f'(x) = \sin x + x \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

We can't evaluate the limits at this stage only as on putting value it will take 0/0 form. So, we need to do little modifications.

Use:  $\sin A - \sin B = 2 \cos ((A + B)/2) \sin ((A - B)/2)$ 

$$\therefore f'(x) = \sin x + x \lim_{h \to 0} \frac{2 \cos\left(\frac{2x+h}{2}\right) \sin\left(\frac{h}{2}\right)}{h}$$
$$\Rightarrow f'(x) = \sin x + x \lim_{h \to 0} \frac{\cos\left(x+\frac{h}{2}\right) \sin\left(\frac{h}{2}\right)}{\frac{h}{2}}$$

Using algebra of limits -

$$\Rightarrow f'(x) = \sin x + x \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \times \lim_{h \to 0} \cos\left(x + \frac{h}{2}\right)$$

Use the formula -  $\lim_{x \to 0} \frac{\sin x}{x} = 1$ 

$$\therefore f'(x) = \sin x + x \times \lim_{h \to 0} \cos\left(x + \frac{h}{2}\right)$$

Put the value of h to evaluate the limit -

$$\therefore f'(x) = \sin x + x \cos(x + 0) = \sin x + x \cos x$$

Hence,

Derivative of  $f(x) = (x \sin x)$  is  $(\sin x + x \cos x)$ 

#### 2 J. Question

Differentiate the following from first principle.

x cos x

#### Answer

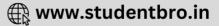
We need to find derivative of  $f(x) = x \cos x$ 

Derivative of a function f(x) is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where h is a very small positive number}}$ 

 $\therefore$  derivative of f(x) = x cos x is given as -





$$\begin{aligned} f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{(x+h)\cos(x+h) - x\cos(x)}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{h\cos(x+h) + x\cos(x+h) - x\cos x}{h} \end{aligned}$$

Using algebra of limits, we have -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{h\cos(x+h)}{h} + \lim_{h \to 0} \frac{x\cos(x+h) - x\cos x}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \cos(x+h) + \lim_{h \to 0} \frac{x(\cos(x+h) - \cos x)}{h}$$

Using algebra of limits we have -

$$\therefore f'(x) = \cos x + x \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}$$

We can't evaluate the limits at this stage only as on putting value it will take 0/0 form. So, we need to do little modifications.

Use:  $\cos A - \cos B = -2 \sin ((A + B)/2) \sin ((A - B)/2)$ 

$$\therefore f'(x) = \cos x + x \lim_{h \to 0} \frac{-2 \sin\left(\frac{2x+h}{2}\right) \sin\left(\frac{h}{2}\right)}{h}$$
$$\Rightarrow f'(x) = \cos x - x \lim_{h \to 0} \frac{\sin\left(\frac{2x+h}{2}\right) \sin\left(\frac{h}{2}\right)}{\frac{h}{2}}$$

Using algebra of limits -

$$\Rightarrow f'(x) = \cos x - x \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \times \lim_{h \to 0} \sin\left(x + \frac{h}{2}\right)$$

Use the formula  $-\lim_{x\to 0} \frac{\sin x}{x} = 1$ 

$$\therefore f'(x) = \cos x - x \times \lim_{h \to 0} \sin \left( x + \frac{h}{2} \right)$$

Put the value of h to evaluate the limit -

 $\therefore$  f'(x) = cos x - x sin x

Hence,

Derivative of  $f(x) = x \cos x$  is  $\cos x - x \sin x$ 

#### 2 K. Question

Differentiate the following from first principle.

sin (2x - 3)

#### Answer

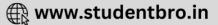
We need to find derivative of  $f(x) = \sin (2x - 3)$ 

Derivative of a function f(x) is given by -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}$$
 {where h is a very small positive number}

 $\therefore$  derivative of f(x) = sin (2x - 3) is given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$



$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sin(2(x+h)-3)-\sin(2x-3)}{h}$$

We can't evaluate the limits at this stage only as on putting value it will take 0/0 form. So, we need to do little modifications.

Use:  $\sin A - \sin B = 2 \cos ((A + B)/2) \sin ((A - B)/2)$ 

Using algebra of limits -

$$\Rightarrow f'(x) = 2 \lim_{h \to 0} \frac{\sin(h)}{h} \times \lim_{h \to 0} \cos(2x - 3 + h)$$

Use the formula -  $\lim_{x \to 0} \frac{\sin x}{x} = 1$ 

$$\therefore f'(x) = 2 \times \lim_{h \to 0} \cos(2x - 3 + h)$$

Put the value of h to evaluate the limit -

$$\therefore f'(x) = 2 \cos (2x - 3 + 0) = 2\cos (2x - 3)$$

Hence,

Derivative of f(x) = sin (2x - 3) = 2cos (2x - 3)

#### 3 A. Question

Differentiate the following from first principles

 $\sqrt{\sin 2x}$ 

## Answer

We need to find derivative of  $f(x) = \sqrt{(\sin 2x)}$ 

Derivative of a function f(x) is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where h is a very small positive number}}$ 

 $\therefore$  derivative of f(x) =  $\sqrt{(\sin 2x)}$  is given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sqrt{\sin 2(x+h)} - \sqrt{\sin 2x}}{h}$$

We can't evaluate the limits at this stage only as on putting value it will take 0/0 form. So, we need to do little modifications.

Multiplying numerator and denominator by  $\sqrt{(\sin 2(x + h))} + \sqrt{(\sin 2x)}$ , we have –

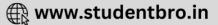
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sqrt{\sin 2(x+h)} - \sqrt{\sin 2x}}{h} \times \frac{\sqrt{\sin 2(x+h)} + \sqrt{\sin 2x}}{\sqrt{\sin 2(x+h)} + \sqrt{\sin 2x}}$$

Using  $a^2 - b^2 = (a + b)(a - b)$ , we have -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\left(\sqrt{\sin 2(x+h)}\right)^2 - \left(\sqrt{\sin 2x}\right)^2}{h\sqrt{\sin 2(x+h)} + \sqrt{\sin 2x}}$$

Again using algebra of limits, we get -





$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sin(2x+2h) - \sin 2x}{h} \times \lim_{h \to 0} \frac{1}{\sqrt{\sin 2(x+h)} + \sqrt{\sin 2x}}$$

Use:  $\sin A - \sin B = 2 \cos ((A + B)/2) \sin ((A - B)/2)$ 

$$\therefore f'(x) = \frac{1}{2\sqrt{\sin 2x} h \to 0} \frac{2\cos\left(\frac{4x+2h}{2}\right)\sin\left(\frac{2h}{2}\right)}{h}$$

 $\Rightarrow f'(x) = \frac{1}{\sqrt{\sin 2x} \ln \Rightarrow 0} \frac{\cos(2x + h)\sin(h)}{h}$ 

Using algebra of limits -

$$\Rightarrow f'(x) = \frac{1}{\sqrt{\sin 2x} \ln 2} \lim_{h \to 0} \frac{\sin(h)}{h} \times \lim_{h \to 0} \cos(2x + h)$$

Use the formula -  $\lim_{x \to 0} \frac{\sin x}{x} = 1$ 

$$\therefore f'(x) = \frac{1}{\sqrt{\sin 2x}} \times \lim_{h \to 0} \cos(2x + h)$$

Put the value of h to evaluate the limit -

$$\therefore f'(x) = \frac{\cos 2x}{\sqrt{\sin 2x}}$$

Hence,

Derivative of  $f(x) = \sqrt{(\sin 2x)} = \frac{\cos 2x}{\sqrt{\sin 2x}}$ 

# 3 B. Question

Differentiate the following from first principles

sin x

х

#### Answer

We need to find derivative of  $f(x) = (\sin x)/x$ 

Derivative of a function f(x) is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where h is a very small positive number}}$ 

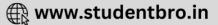
 $\therefore$  derivative of f(x) = (sin x)/x is given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\frac{\sin(x+h) - \sin x}{x+h}}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\frac{x \sin(x+h) - (x+h) \sin x}{x(x+h)}}{h} = \lim_{h \to 0} \frac{x \sin(x+h) - (x+h) \sin x}{h(x)(x+h)}$$

Using algebra of limits we have -

$$\begin{split} &\therefore f'(x) = \lim_{h \to 0} \frac{x \sin(x+h) - (x+h) \sin x}{h} \times \lim_{h \to 0} \frac{1}{x(x+h)} \\ &\Rightarrow f'(x) = \lim_{h \to 0} \frac{x \sin(x+h) - (x+h) \sin x}{h} \times \frac{1}{x(x+0)} \\ &\Rightarrow f'(x) = \frac{1}{x^2} \lim_{h \to 0} \frac{x \sin(x+h) - (x+h) \sin x}{h} \\ &\Rightarrow f'(x) = \frac{1}{x^2} \lim_{h \to 0} \frac{x \sin(x+h) - x \sin x - h \sin x}{h} \end{split}$$



Using algebra of limits, we have -

$$\Rightarrow f'(x) = \frac{1}{x^2} \left\{ \lim_{h \to 0} \frac{-h \sin x}{h} + \lim_{h \to 0} \frac{x \sin(x+h) - x \sin x}{h} \right\}$$
$$\Rightarrow f'(x) = \frac{1}{x^2} \left\{ -\lim_{h \to 0} \sin x + \lim_{h \to 0} \frac{x (\sin(x+h) - \sin x)}{h} \right\}$$

Using algebra of limits we have -

$$\therefore f'(x) = -\frac{\sin x}{x^2} + \frac{1}{x} \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

We can't evaluate the limits at this stage only as on putting value it will take 0/0 form. So, we need to do little modifications.

Use:  $\sin A - \sin B = 2 \cos ((A + B)/2) \sin ((A - B)/2)$ 

$$\begin{aligned} &\therefore f'(\mathsf{x}) = -\frac{\sin x}{x^2} + \frac{1}{x} \lim_{h \to 0} \frac{2\cos\left(\frac{2x+h}{2}\right)\sin\left(\frac{h}{2}\right)}{h} \\ &\Rightarrow f'(\mathsf{x}) = -\frac{\sin x}{x^2} + \frac{1}{x} \lim_{h \to 0} \frac{\cos\left(x+\frac{h}{2}\right)\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \end{aligned}$$

Using algebra of limits -

$$\Rightarrow f'(x) = -\frac{\sin x}{x^2} + \frac{1}{x} \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \times \lim_{h \to 0} \cos\left(x + \frac{h}{2}\right)$$

Use the formula -  $\lim_{x \to 0} \frac{\sin x}{x} = 1$ 

$$\therefore f'(x) = -\frac{\sin x}{x^2} + \frac{1}{x} \times \lim_{h \to 0} \cos\left(x + \frac{h}{2}\right)$$

Put the value of h to evaluate the limit -

$$\therefore f'(x) = -\frac{\sin x}{x^2} + \frac{1}{x} \times \cos(x + 0) = -\frac{\sin x}{x^2} + \frac{\cos x}{x}$$

Hence,

Derivative of f(x) = (sin x)/x is  $-\frac{\sin x}{x^2} + \frac{\cos x}{x}$ 

## 3 C. Question

Differentiate the following from first principles

 $\cos x$ 

Х

#### Answer

We need to find derivative of  $f(x) = (\cos x)/x$ 

Derivative of a function f(x) is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$  {where h is a very small positive number}

 $\therefore$  derivative of f(x) = (cos x)/x is given as -

$$\begin{aligned} f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{\frac{\cos(x+h) - \cos x}{x+h} - \cos x}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{\frac{x\cos(x+h) - (x+h)\cos x}{h}}{h} = \lim_{h \to 0} \end{aligned}$$

 $= \lim_{h \to 0} \frac{x \cos(x+h) - (x+h) \cos x}{h(x)(x+h)}$ 

**CLICK HERE** 

≫

🕀 www.studentbro.in

Using algebra of limits we have -

$$\begin{split} & \therefore f'(x) = \lim_{h \to 0} \frac{x \cos(x+h) - (x+h) \cos x}{h} \times \lim_{h \to 0} \frac{1}{x(x+h)} \\ & \Rightarrow f'(x) = \lim_{h \to 0} \frac{x \cos(x+h) - (x+h) \cos x}{h} \times \frac{1}{x(x+0)} \\ & \Rightarrow f'(x) = \frac{1}{x^2} \lim_{h \to 0} \frac{x \cos(x+h) - (x+h) \cos x}{h} \\ & \Rightarrow f'(x) = \frac{1}{x^2} \lim_{h \to 0} \frac{x \cos(x+h) - x \cos x - h \cos x}{h} \end{split}$$

Using algebra of limits, we have -

$$\Rightarrow f'(x) = \frac{1}{x^2} \left\{ \lim_{h \to 0} \frac{-h\cos x}{h} + \lim_{h \to 0} \frac{x\cos(x+h) - x\cos x}{h} \right\}$$
$$\Rightarrow f'(x) = \frac{1}{x^2} \left\{ -\lim_{h \to 0} \cos x + \lim_{h \to 0} \frac{x(\cos(x+h) - \cos x)}{h} \right\}$$

Using algebra of limits we have -

$$\therefore f'(x) = -\frac{\cos x}{x^2} + \frac{1}{x} \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}$$

We can't evaluate the limits at this stage only as on putting value it will take 0/0 form. So, we need to do little modifications.

Use:  $\cos A - \cos B = -2 \sin ((A + B)/2) \sin ((A - B)/2)$ 

$$\dot{f}'(\mathbf{x}) = -\frac{\cos x}{x^2} + \frac{1}{x} \lim_{h \to 0} \frac{-2\sin\left(\frac{2x+h}{2}\right)\sin\left(\frac{h}{2}\right)}{h}$$

$$\Rightarrow f'(\mathbf{x}) = -\frac{\cos x}{x^2} - \frac{1}{x} \lim_{h \to 0} \frac{\sin\left(x+\frac{h}{2}\right)\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}$$

Using algebra of limits -

$$\Rightarrow f'(x) = -\frac{\cos x}{x^2} - \frac{1}{x} \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \times \lim_{h \to 0} \sin\left(x + \frac{h}{2}\right)$$

Use the formula -  $\lim_{x \to 0} \frac{\sin x}{x} = 1$ 

$$\therefore f'(x) = -\frac{\cos x}{x^2} - \frac{1}{x} \times \lim_{h \to 0} \sin\left(x + \frac{h}{2}\right)$$

Put the value of h to evaluate the limit -

: 
$$f'(x) = -\frac{\cos x}{x^2} - \frac{1}{x} \times \sin(x + 0) = -\frac{\cos x}{x^2} - \frac{\sin x}{x}$$

Hence,

Derivative of f(x) = (cos x)/x is 
$$-\frac{\cos x}{x^2} - \frac{\sin x}{x}$$

## 3 D. Question

Differentiate the following from first principles

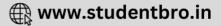
 $x^2 \sin x$ 

#### Answer

We need to find derivative of  $f(x) = x^2 \sin x$ Derivative of a function f(x) is given by –

Get More Learning Materials Here :

CLICK HERE



 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where h is a very small positive number}}$ 

 $\therefore$  derivative of f(x) = x<sup>2</sup> sin x is given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{(x+h)^2 \sin(x+h) - x^2 \sin x}{h}$$

Using  $(a + b)^2 = a^2 + 2ab + b^2$ , we have -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{h^2 \sin (x+h) + x^2 \sin (x+h) + 2hx \sin (x+h) - x^2 \sin x}{h}$$

Using algebra of limits, we have -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{h^2 \sin(x+h)}{h} + \lim_{h \to 0} \frac{x^2 \sin(x+h) - x^2 \sin x}{h} + \lim_{h \to 0} \frac{2hx \sin(x+h)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} h \sin(x + h) + \lim_{h \to 0} \frac{x^{a}(\sin(x + h) - \sin x)}{h} + \lim_{h \to 0} 2x \sin(x + h)$$

$$\Rightarrow f'(x) = 0 \times \sin(x + 0) + 2x \sin(x + 0) + x^{2} \lim_{h \to 0} \frac{(\sin(x + h) - \sin x)}{h}$$

$$\Rightarrow f'(x) = 2x \sin x + x^2 \lim_{h \to 0} \frac{(\sin(x+h) - \sin x)}{h}$$

Using algebra of limits we have -

$$\therefore f'(x) = 2x \sin x + x^2 \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

We can't evaluate the limits at this stage only as on putting value it will take 0/0 form. So, we need to do little modifications.

Use:  $\sin A - \sin B = 2 \cos ((A + B)/2) \sin ((A - B)/2)$  $\therefore f'(x) = 2x \sin x + x^2 \lim_{h \to 0} \frac{2 \cos(\frac{2x+h}{2}) \sin(\frac{h}{2})}{h}$ 

$$\Rightarrow f'(x) = 2x \sin x + x^2 \lim_{h \to 0} \frac{\cos\left(x + \frac{h}{2}\right) \sin\left(\frac{h}{2}\right)}{\frac{h}{2}}$$

Using algebra of limits -

 $\Rightarrow f'(x) = 2x \sin x + x^2 \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \times \lim_{h \to 0} \cos\left(x + \frac{h}{2}\right)$ 

Use the formula -  $\lim_{x \to 0} \frac{\sin x}{x} = 1$ 

$$\therefore f'(x) = 2x \sin x + x^2 \times \lim_{h \to 0} \cos\left(x + \frac{h}{2}\right)$$

Put the value of h to evaluate the limit -

$$\therefore f'(x) = 2x \sin x + x^2 \cos(x + 0) = 2x \sin x + x^2 \cos x$$

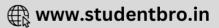
Hence,

Derivative of  $f(x) = (x^2 \sin x)$  is  $(2x \sin x + x^2 \cos x)$ 

## 3 E. Question

Differentiate the following from first principles

$$\sin(3x+1)$$



#### Answer

We need to find derivative of  $f(x) = \sqrt{(\sin (3x + 1))}$ 

Derivative of a function f(x) is given by –

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where h is a very small positive number}}$ 

 $\therefore$  derivative of f(x) =  $\sqrt{(\sin (3x + 1))}$  is given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sqrt{\sin\{3(x+h)+1\}} - \sqrt{\sin(3x+1)}}{h}$$

We can't evaluate the limits at this stage only as on putting value it will take 0/0 form. So, we need to do little modifications.

Multiplying numerator and denominator by  $\sqrt{\sin\{3(x + h) + 1\}} + \sqrt{\sin(3x + 1)}$ , we have -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sqrt{\sin\{3(x+h)+1\}} - \sqrt{\sin(3x+1)}}{h} \times \frac{\sqrt{\sin\{3(x+h)+1\}} + \sqrt{\sin(3x+1)}}{\sqrt{\sin\{3(x+h)+1\}} + \sqrt{\sin(3x+1)}}$$

Using  $a^2 - b^2 = (a + b)(a - b)$ , we have -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\left(\sqrt{\sin\{3(x+h)+1\}}\right)^2 - \left(\sqrt{\sin(3x+1)}\right)^2}{h\sqrt{\sin\{3(x+h)+1\}} + \sqrt{\sin(3x+1)}}$$

Again using algebra of limits, we get -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sin(3x+3h+1) - \sin(3x+1)}{h} \times \lim_{h \to 0} \frac{1}{\sqrt{\sin\{3(x+h)+1\}} + \sqrt{\sin(3x+1)}}$$

Use:  $\sin A - \sin B = 2 \cos ((A + B)/2) \sin ((A - B)/2)$ 

Using algebra of limits -

$$\Rightarrow f'(x) = \frac{1}{\sqrt{\sin(3x+1)}} \lim_{h \to 0} \frac{\frac{3}{2} \sin\left(\frac{3h}{2}\right)}{\frac{3h}{2}} \times \lim_{h \to 0} \cos\left(3x + 1 + \frac{3h}{2}\right)$$

Use the formula  $-\lim_{x\to 0} \frac{\sin x}{x} = 1$ 

$$\therefore f'(x) = \frac{3}{2\sqrt{\sin(3x+1)}} \times \lim_{h \to 0} \cos\left(3x + 1 + \frac{h}{2}\right)$$

Put the value of h to evaluate the limit -

$$\therefore f'(x) = \frac{3}{2} \frac{\cos(3x+1)}{\sqrt{\sin(3x+1)}}$$

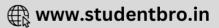
Hence,

Derivative of f(x) =  $\sqrt{(\sin (3x + 1))} = \frac{3}{2} \frac{\cos (3x + 1)}{\sqrt{\sin(3x + 1)}}$ 

# 3 F. Question

Differentiate the following from first principles

sin x + cos x



#### Answer

We need to find derivative of  $f(x) = \sin x + \cos x$ 

Derivative of a function f(x) is given by –

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \{ where h \text{ is a very small positive number} \}$$

 $\therefore$  derivative of f(x) = sin x + cos x is given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sin(x+h) + \cos(x+h) - (\sin x + \cos x)}{h}$$

Using algebra of limits we have -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} + \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}$$

We can't evaluate the limits at this stage only as on putting value it will take 0/0 form. So, we need to do little modifications.

Use:  $\sin A - \sin B = 2 \cos ((A + B)/2) \sin ((A - B)/2)$  and

 $\cos A - \cos B = -2 \sin ((A + B)/2) \sin ((A - B)/2)$ 

$$\therefore f'(x) = \lim_{h \to 0} \frac{2\cos\left(\frac{2x+h}{2}\right)\sin\left(\frac{h}{2}\right)}{h} + \lim_{h \to 0} \frac{-2\sin\left(\frac{2x+h}{2}\right)\sin\left(\frac{h}{2}\right)}{h}$$

Dividing numerator and denominator by 2 in both the terms -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\cos\left(x + \frac{h}{2}\right)\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} - \lim_{h \to 0} \frac{\sin\left(x + \frac{h}{2}\right)\sin\left(\frac{h}{2}\right)}{\frac{h}{2}}$$

Using algebra of limits -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \times \lim_{h \to 0} \cos\left(x + \frac{h}{2}\right) - \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \times \lim_{h \to 0} \sin\left(x + \frac{h}{2}\right)$$

Use the formula -  $\lim_{x \to 0} \frac{\sin x}{x} = 1$ 

$$\therefore f'(x) = 1 \times \lim_{h \to 0} \cos\left(x + \frac{h}{2}\right) - 1 \times \lim_{h \to 0} \sin\left(x + \frac{h}{2}\right)$$

Put the value of h to evaluate the limit -

$$f'(x) = \cos (x + 0) - \sin (x + 0) = \cos x - \sin x$$

Hence,

Derivative of  $f(x) = \sin x + \cos x = \cos x - \sin x$ 

# 3 G. Question

Differentiate the following from first principles

 $x^2e^x$ 

# Answer

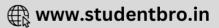
We need to find derivative of  $f(x) = x^2 e^x$ 

Derivative of a function f(x) is given by –

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where h is a very small positive number}}$ 

 $\therefore$  derivative of f(x) = x<sup>2</sup> e<sup>x</sup> is given as -





$$\begin{aligned} f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{(x+h)^2 e^{(x+h)} - x^2 e^x}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{h^2 e^{x+h} + x^2 e^{x+h} + 2hx e^{x+h} - x^2 e^x}{h} \end{aligned}$$

Using algebra of limits, we have -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{h^2 e^{x+h}}{h} + \lim_{h \to 0} \frac{x^2 (e^{x+h} - e^x)}{h} + \lim_{h \to 0} \frac{2hx e^{x+h}}{h}$$

$$\Rightarrow \lim_{h \to 0} he^{x+h} + x^2 \lim_{h \to 0} \frac{e^{x}(e^{n}-1)}{h} + \lim_{h \to 0} 2xe^{x+h}$$

As 2 of the terms will not take indeterminate form if we put value of h = 0, so obtained their limiting value as follows –

$$\therefore f'(x) = 0 \times e^{x+0} + 2x e^{x+0} + e^x x^2 \lim_{h \to 0} \frac{(e^n - 1)}{h}$$
  
Use the formula: 
$$\lim_{x \to 0} \frac{e^x - 1}{x} = \log_e e = 1$$
$$\Rightarrow f'(x) = 2x e^x + x^2 e^x$$

$$\Rightarrow$$
 f'(x) = 2x e<sup>x</sup> + x<sup>2</sup> e<sup>x</sup>

Hence,

Derivative of  $f(x) = x^2 e^x = 2x e^x + x^2 e^x$ 

#### 3 H. Question

Differentiate the following from first principles

$$e^{x^2} + 1$$

## Answer

We need to find derivative of  $f(x) = e^{x^2} + 1$ 

Derivative of a function f(x) is given by -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 {where h is a very small positive number}

 $\therefore$  derivative of f(x) =  $e^{x^2} + 1$  is given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
  

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{e^{(x+h)^2} + 1 - e^{x^2} - 1}{h}$$
  

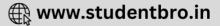
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{e^{x^2 + 2hx + h^2} - e^{x^2}}{h}$$

Taking  $e^{x^2}$  common, we have -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{e^{x^2} (e^{2hx + h^2} - 1)}{h}$$

Using algebra of limits -

$$\Rightarrow f'(x) = \lim_{h \to 0} e^{x^2} \times \lim_{h \to 0} \frac{e^{2hx + h^2} - 1}{h}$$



$$\Rightarrow f'(x) = e^{x^2} \lim_{h \to 0} \frac{e^{2hx + h^2} - 1}{h}$$

As one of the limits  $\lim_{h \to 0} \frac{e^{2hx+h^2}-1}{h}$  can't be evaluated by directly putting the value of h as it will take 0/0 form.

So we need to take steps to find its value.

As  $h \rightarrow 0$  so,  $(2hx + h^2) \rightarrow 0$ 

 $\therefore$  multiplying numerator and denominator by (2hx + h<sup>2</sup>) in order to apply the formula –

$$\lim_{x \to 0} \frac{e^{x} - 1}{x} = \log_{e} e = 1$$
  
$$\therefore f'(x) = e^{x^{2}} \lim_{h \to 0} \frac{e^{2hx + h^{2}} - 1}{2hx + h^{2}} \times \frac{2hx + h^{2}}{h}$$

Again using algebra of limits, we have -

$$\Rightarrow f'(x) = e^{x^2} \lim_{h \to 0} \frac{e^{2hx+h^2}-1}{2hx+h^2} \times \lim_{h \to 0} \frac{h(2x+h)}{h}$$
  
Use the formula: 
$$\lim_{x \to 0} \frac{e^{x}-1}{x} = \log_e e = 1$$
$$\Rightarrow f'(x) = e^{x^2} \lim_{h \to 0} \frac{h(2x+h)}{h}$$
$$\Rightarrow f'(x) = e^{x^2} \lim_{h \to 0} (2x+h)$$
$$\therefore f'(x) = e^{x^2} \times (2x+0) = 2x e^{x^2}$$

Hence,

Derivative of  $f(x) = e^{x^2} + 1 = 2x e^{x^2}$ 

# 3 I. Question

Differentiate the following from first principles

$$e^{\sqrt{2x}}$$

# Answer

We need to find derivative of  $f(x) = e^{\sqrt{2}x}$ 

Derivative of a function f(x) is given by -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \{ \text{where } h \text{ is a very small positive number} \}$$

 $\therefore$  derivative of f(x) =  $e^{\sqrt{2x}}$  is given as -

$$\begin{aligned} f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{e^{\sqrt{2(x+h)}} - e^{\sqrt{2x}}}{h} \end{aligned}$$

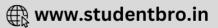
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{e^{\sqrt{2x+2h}} - e^{\sqrt{2x}}}{h}$$

Taking  $e^{\sqrt{2x}}$  common, we have –

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{e^{\sqrt{2x}}(e^{\sqrt{2x+2h}-\sqrt{2x}}-1)}{h}$$

Using algebra of limits -





$$\Rightarrow f'(x) = \lim_{h \to 0} e^{\sqrt{2x}} \times \lim_{h \to 0} \frac{(e^{\sqrt{2x+2h}-\sqrt{2x}}-1)}{h}$$
$$\Rightarrow f'(x) = e^{\sqrt{2x}} \lim_{h \to 0} \frac{(e^{\sqrt{2x+2h}-\sqrt{2x}}-1)}{h}$$

As one of the limits  $\lim_{h \to 0} \frac{(e^{\sqrt{2x+2h}-\sqrt{2x}}-1)}{h}$  can't be evaluated by directly putting the value of h as it will take 0/0 form.

So we need to take steps to find its value.

As 
$$h \rightarrow 0$$
 so,  $(\sqrt{2x + 2h} - \sqrt{2x}) \rightarrow 0$ 

 $\therefore$  multiplying numerator and denominator by  $\sqrt{2x + 2h} - \sqrt{2x}$  in order to apply the formula  $-\lim_{x\to 0} \frac{e^x - 1}{x} = \log_e e = 1$ 

$$\therefore f'(x) = e^{\sqrt{2x}} \lim_{h \to 0} \frac{e^{\sqrt{2x+2h} - \sqrt{2x}} - 1}{\sqrt{2x+2h} - \sqrt{2x}} \times \frac{\sqrt{2x+2h} - \sqrt{2x}}{h}$$

Again using algebra of limits, we have -

$$\Rightarrow f'(x) = e^{\sqrt{2x}} \lim_{h \to 0} \frac{e^{\sqrt{2x+2h}-\sqrt{2x}}-1}{\sqrt{2x+2h}-\sqrt{2x}} \times \lim_{h \to 0} \frac{\sqrt{2x+2h}-\sqrt{2x}}{h}$$

Use the formula:  $\lim_{x \to 0} \frac{e^x - 1}{x} = \log_e e = 1$ 

$$\Rightarrow f'(x) = e^{\sqrt{2x}} \lim_{h \to 0} \frac{\sqrt{2x + 2h} - \sqrt{2x}}{h}$$

Again we get an indeterminate form, so multiplying and dividing  $\sqrt{(2x + 2h)} + \sqrt{(2x)}$  to get rid of indeterminate form.

$$\therefore f'(x) = e^{\sqrt{2x}} \lim_{h \to 0} \frac{\sqrt{2x+2h} - \sqrt{2x}}{h} \times \frac{\sqrt{2x+2h} + \sqrt{2x}}{\sqrt{2x+2h} + \sqrt{2x}}$$

Using  $a^2 - b^2 = (a + b)(a - b)$ , we have -

$$\Rightarrow f'(x) = e^{\sqrt{2x}} \lim_{h \to 0} \frac{\left(\sqrt{2x+2h}\right)^2 - \left(\sqrt{2x}\right)^2}{h\left(\sqrt{2x+2h} + \sqrt{2x}\right)}$$

Using algebra of limits we have -

$$\Rightarrow f'(x) = e^{\sqrt{2x}} \lim_{h \to 0} \frac{2x + 2h - 2h}{h} \times \lim_{h \to 0} \frac{1}{\sqrt{2x + 2h} + \sqrt{2x}}$$

$$\Rightarrow f'(x) = e^{\sqrt{2x}} \lim_{h \to 0} \frac{2h}{h} \times \frac{1}{\sqrt{2x + 2(0)} + \sqrt{2x}}$$

$$\Rightarrow f'(x) = e^{\sqrt{2x}} \lim_{h \to 0} 2 \times \frac{1}{2\sqrt{2x}}$$

$$\therefore f'(x) = \frac{e^{\sqrt{2x}}}{\sqrt{2x}}$$

Hence,

Derivative of f(x) =  $e^{\sqrt{2x}} = \frac{e^{\sqrt{2x}}}{\sqrt{2x}}$ 

# 3 J. Question

Differentiate the following from first principles

e<sup>√ax+b</sup>

## Answer



We need to find derivative of  $f(x) = e^{\sqrt{ax + b}}$ 

Derivative of a function f(x) is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where h is a very small positive number}}$ 

 $\therefore$  derivative of f(x) =  $e^{\sqrt{(ax + b)}}$  is given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
  
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{e^{\sqrt{a(x+h) + b}} - e^{\sqrt{ax+b}}}{h}$$
  
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{e^{\sqrt{ax+ah+b}} - e^{\sqrt{ax+b}}}{h}$$

Taking evax+b common, we have -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{e^{\sqrt{ax+b}}(e^{\sqrt{ax+ah+b}-\sqrt{ax+b}}-1)}{h}$$

Using algebra of limits -

$$\Rightarrow f'(x) = \lim_{h \to 0} e^{\sqrt{ax+b}} \times \lim_{h \to 0} \frac{(e^{\sqrt{ax+ah+b} - \sqrt{ax+b}} - 1)}{h}$$
$$\Rightarrow f'(x) = e^{\sqrt{ax+b}} \lim_{h \to 0} \frac{(e^{\sqrt{ax+ah+b} - \sqrt{ax+b}} - 1)}{h}$$

As one of the limits  $\lim_{h\to 0} \frac{(e^{\sqrt{ax+ah+b}-\sqrt{ax+b}-1})}{h}$  can't be evaluated by directly putting the value of h as it will take 0/0 form.

So we need to take steps to find its value.

As  $h \rightarrow 0$  so,  $(\sqrt{ax + ah + b} - \sqrt{ax + b}) \rightarrow 0$ 

: multiplying numerator and denominator by  $\sqrt{ax + ah + b} - \sqrt{ax + b}$  in order to apply the formula  $\lim_{x \to 0} \frac{e^x - 1}{x} = \log_e e = 1$ 

$$\therefore f'(x) = e^{\sqrt{ax+b}} \lim_{h \to 0} \frac{e^{\sqrt{ax+ah+b}} - \sqrt{ax+b}}{\sqrt{ax+ah+b} - \sqrt{ax+b}} \times \frac{\sqrt{ax+ah+b} - \sqrt{ax+b}}{h}$$

Again using algebra of limits, we have -

$$\Rightarrow f'(x) = e^{\sqrt{ax+b}} \lim_{h \to 0} \frac{e^{\sqrt{ax+ah+b}} - \sqrt{ax+b}}{\sqrt{ax+ah+b} - \sqrt{ax+b}} \times \lim_{h \to 0} \frac{\sqrt{ax+ah+b} - \sqrt{ax+b}}{h}$$

Use the formula:  $\lim_{x \to 0} \frac{e^x - 1}{x} = \log_e e = 1$ 

$$\Rightarrow f'(x) = e^{\sqrt{ax+b}} \lim_{h \to 0} \frac{\sqrt{ax+ah+b} - \sqrt{ax+b}}{h}$$

Again we get an indeterminate form, so multiplying and dividing  $\sqrt{ax + ah + b} + \sqrt{ax + b}$  to get rid of indeterminate form.

$$\therefore f'(x) = e^{\sqrt{ax+b}} \lim_{h \to 0} \frac{\sqrt{ax+ah+b} - \sqrt{ax+b}}{h} \times \frac{\sqrt{ax+ah+b} + \sqrt{ax+b}}{\sqrt{ax+ah+b} + \sqrt{ax+b}}$$

Using  $a^2 - b^2 = (a + b)(a - b)$ , we have -

$$\Rightarrow f'(x) = e^{\sqrt{ax+b}} \lim_{h \to 0} \frac{(\sqrt{ax+ah+b})^2 - (\sqrt{ax+b})^2}{h(\sqrt{ax+ah+b} + \sqrt{ax+b})}$$

Using algebra of limits we have -

Get More Learning Materials Here :

# Regional www.studentbro.in

$$\Rightarrow f'(x) = e^{\sqrt{ax+b}} \lim_{h \to 0} \frac{ax+ah+b-ax-b}{h} \times \lim_{h \to 0} \frac{1}{\sqrt{ax+ah+b} + \sqrt{ax+b}}$$

$$\Rightarrow f'(x) = e^{\sqrt{ax+b}} \lim_{h \to 0} \frac{ah}{h} \times \frac{1}{\sqrt{ax+a(0)+b} + \sqrt{ax+b}}$$

$$\Rightarrow f'(x) = e^{\sqrt{ax+b}} \lim_{h \to 0} a \times \frac{1}{2\sqrt{ax+b}}$$

$$\therefore f'(x) = \frac{ae^{\sqrt{ax+b}}}{2\sqrt{ax+b}}$$

Hence,

Derivative of f(x) =  $e^{\sqrt{(ax + b)}} = \frac{ae^{\sqrt{ax + b}}}{2\sqrt{ax + b}}$ 

## 3 K. Question

Differentiate the following from first principles

#### Answer

We need to find derivative of  $f(x) = a^{\sqrt{x}}$ 

Derivative of a function f(x) is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where h is a very small positive number}}$ 

 $\therefore$  derivative of f(x) =  $a^{\sqrt{x}}$  is given as –

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{a^{\sqrt{(x+h)}} - a^{\sqrt{x}}}{h}$$

$$\Rightarrow f(x) = \lim_{h \to 0} \frac{2}{h}$$

Taking  $a^{\sqrt{x}}$  common, we have -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{a^{\sqrt{x}} (a^{\sqrt{x+h} - \sqrt{x}} - 1)}{h}$$

Using algebra of limits -

$$\Rightarrow f'(x) = \lim_{h \to 0} a^{\sqrt{x}} \times \lim_{h \to 0} \frac{(a^{\sqrt{x+h} - \sqrt{x}} - 1)}{h}$$
$$\Rightarrow f'(x) = a^{\sqrt{x}} \lim_{h \to 0} \frac{(a^{\sqrt{x+h} - \sqrt{x}} - 1)}{h}$$

As one of the limits  $\lim_{h\to 0} \frac{(a^{\sqrt{x+h}-\sqrt{x}}-1)}{h}$  can't be evaluated by directly putting the value of h as it will take 0/0 form.

So we need to take steps to find its value.

As 
$$h \rightarrow 0$$
 so,  $(\sqrt{x + h} - \sqrt{x}) \rightarrow 0$ 

 $\therefore$  multiplying numerator and denominator by  $\sqrt{x + h} - \sqrt{x}$  in order to apply the formula  $-\lim_{x \to 0} \frac{a^x - 1}{x} = \log_e a$ 

CLICK HERE

$$\therefore f'(x) = a^{\sqrt{x}} \lim_{h \to 0} \frac{a^{\sqrt{x+h} - \sqrt{x}} - 1}{\sqrt{x+h} - \sqrt{x}} \times \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

Again using algebra of limits, we have -

$$\Rightarrow f'(x) = a^{\sqrt{x}} \lim_{h \to 0} \frac{a^{\sqrt{x} + h - \sqrt{x}} - 1}{\sqrt{x} + h - \sqrt{x}} \times \lim_{h \to 0} \frac{\sqrt{x} + h - \sqrt{x}}{h}$$
  
Use the formula: 
$$\lim_{x \to 0} \frac{a^x - 1}{x} = \log_e a$$
$$\Rightarrow f'(x) = a^{\sqrt{x}} \times \log_e a \times \lim_{h \to 0} \frac{\sqrt{x} + h - \sqrt{x}}{h}$$

Again we get an indeterminate form, so multiplying and dividing

 $\sqrt{(x + h)} + \sqrt{(x)}$  to get rid of indeterminate form.

$$\therefore f'(x) = a^{\sqrt{x}} \log_e a \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \times \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

Using  $a^2 - b^2 = (a + b)(a - b)$ , we have -

$$\Rightarrow f'(x) = a^{\sqrt{x}} \log_e a \lim_{h \to 0} \frac{(\sqrt{x+h})^2 - (\sqrt{x})^2}{h(\sqrt{x+h} + \sqrt{x})}$$

Using algebra of limits we have -

$$\Rightarrow f'(x) = a^{\sqrt{x}} \log_e a \lim_{h \to 0} \frac{x + h - x}{h} \times \lim_{h \to 0} \frac{1}{(\sqrt{x + h} + \sqrt{x})}$$
$$\Rightarrow f'(x) = a^{\sqrt{x}} \log_e a \lim_{h \to 0} \frac{h}{h} \times \frac{1}{\sqrt{x + (0)} + \sqrt{x}}$$
$$\Rightarrow f'(x) = a^{\sqrt{x}} \log_e a \lim_{h \to 0} 1 \times \frac{1}{2\sqrt{x}}$$
$$\therefore f'(x) = \frac{a^{\sqrt{x}}}{2\sqrt{x}} \log_e a$$

Hence,

Derivative of 
$$f(x) = a^{\sqrt{x}} = \frac{a^{\sqrt{x}}}{2\sqrt{x}} \log_e a$$

## 3 L. Question

Differentiate the following from first principles

3<sup>x<sup>2</sup></sup>

# Answer

We need to find derivative of  $f(x) = 3^{x^2}$ 

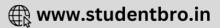
Derivative of a function f(x) is given by -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}$$
 {where h is a very small positive number}

 $\therefore$  derivative of f(x) =  $3^{x^2}$  is given as –

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{3^{(x+h)^2} - 3^{x^2}}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{3^{x^2 + 2hx + h^2} - 3^{x^2}}{h}$$

Taking  $3^{x^2}$  common, we have -



$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{3^{x^2}(3^{2hx + h^2} - 1)}{h}$$

Using algebra of limits -

$$\Rightarrow f'(x) = \lim_{h \to 0} 3^{x^2} \times \lim_{h \to 0} \frac{3^{2hx+h^2}-1}{h}$$
$$\Rightarrow f'(x) = 3^{x^2} \lim_{h \to 0} \frac{3^{2hx+h^2}-1}{h}$$

As one of the limits  $\lim_{h \to 0} \frac{3^{2hx+h^2}-1}{h}$  can't be evaluated by directly putting the value of h as it will take 0/0 form.

So we need to take steps to find its value.

As  $h \rightarrow 0$  so,  $(2hx + h^2) \rightarrow 0$ 

 $\therefore$  multiplying numerator and denominator by (2hx + h<sup>2</sup>) in order to apply the formula  $-\lim_{x\to 0} \frac{a^{x}-1}{x} = \log_{e} a$ 

$$\therefore f'(x) = 3^{x^2} \lim_{h \to 0} \frac{3^{2hx+h^2}-1}{2hx+h^2} \times \frac{2hx+h^2}{h}$$

Again using algebra of limits, we have -

$$\Rightarrow f'(x) = 3^{x^2} \lim_{h \to 0} \frac{3^{2nx+n^2}-1}{2hx+h^2} \times \lim_{h \to 0} \frac{h(2x+h)}{h}$$
Use the formula: 
$$\lim_{x \to 0} \frac{a^x-1}{x} = \log_e a$$

$$\Rightarrow f'(x) = 3^{x^2} \times \log_e 3 \times \lim_{h \to 0} \frac{h(2x+h)}{h}$$

$$\Rightarrow f'(x) = 3^{x^2} \log_e 3 \lim_{h \to 0} (2x+h)$$

$$\therefore f'(x) = 3^{x^2} \log_e 3 \times (2x+0) = 2x 3^{x^2} \log_e 3$$
Hence,

Derivative of  $f(x) = 3^{x^2} = 2x 3^{x^2} \log_e 3$ 

# 4 A. Question

Differentiate the following from first principles

 $\tan^2 x$ 

# Answer

We need to find derivative of  $f(x) = \tan^2 x$ 

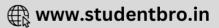
Derivative of a function f(x) is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where $h$ is a very small positive number}}$ 

 $\therefore$  derivative of f(x) = tan<sup>2</sup> x is given as -

$$\begin{aligned} f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{\tan^2(x+h) - \tan^2 x}{h} \\ \text{Using } (a + b)(a - b) &= a^2 - b^2 \text{ ,we have } - \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{\{\tan(x+h) - \tan x\} \{\tan(x+h) + \tan x\}}{h} \end{aligned}$$





Using algebra of limits, we have -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\{\tan(x+h) - \tan x\}}{h} \times \lim_{h \to 0} \{\tan(x+h) + \tan x\}$$

$$\Rightarrow f'(x) = \{\tan(x+0) + \tan x\} \times \lim_{h \to 0} \frac{\{\tan(x+h) - \tan x\}}{h}$$

$$\Rightarrow f'(x) = 2\tan x \lim_{h \to 0} \frac{\{\tan(x+h) - \tan x\}}{h}$$

$$\Rightarrow f'(x) = 2\tan x \lim_{h \to 0} \frac{\frac{\sin x + h}{\cos x} - \frac{\sin x}{h}}{h}$$

$$\Rightarrow f'(x) = 2\tan x \lim_{h \to 0} \frac{\frac{\cos x \sin(x+h) - \sin x \cos(x+h)}{h}}{h\{\cos x \cos(x+h)\}}$$

$$Using: \sin A \cos B - \cos A \sin B = \sin (A - B)$$

$$\Rightarrow f'(x) = 2\tan x \lim_{h \to 0} \frac{\sin(x+h-x)}{h\{\cos x \cos(x+h)\}}$$

$$Using algebra of limits we have -$$

 $\therefore f'(x) = 2 \tan x \lim_{h \to 0} \frac{\sin(h)}{h} \times \lim_{h \to 0} \frac{1}{\{\cos x \cos(x+h)\}}$ Use the formula  $-\lim_{x \to 0} \frac{\sin x}{x} = 1$   $\therefore f'(x) = 2 \tan x \times 1 \times \frac{1}{\{\cos x \cos(x+0)\}}$   $\therefore f'(x) = \frac{2 \tan x}{\cos^2 x} = 2 \tan x \sec^2 x$ 

Hence,

Derivative of  $f(x) = (\tan^2 x)$  is  $(2 \tan x \sec^2 x)$ 

#### 4 B. Question

Differentiate the following from first principles

tan (2x + 1)

#### Answer

We need to find derivative of  $f(x) = \tan (2x + 1)$ 

Derivative of a function f(x) is given by -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}$$
 {where h is a very small positive number}

 $\therefore$  derivative of f(x) = tan (2x + 1) is given as -

$$\begin{aligned} f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{\tan(2(x+h) + 1) - \tan(2x+1)}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{\tan(2x+2h+1) - \tan(2x+1)}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{\frac{\sin(2x+2h+1) - \sin(2x+1)}{\cos(2x+2h+1) - \cos(2x+1)}}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{\cos(2x+1)\sin(2x+2h+1) - \sin(2x+1)\cos(2x+2h+1)}{h} \\ \end{aligned}$$

CLICK HERE

>>>

R www.studentbro.in

Using: sin A cos B - cos A sin B = sin (A - B)

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sin(2x + 2h + 1 - 2x - 1)}{h\{\cos(2x + 1)\cos(2x + 2h + 1)\}}$$

Using algebra of limits we have -

$$\therefore f'(x) = \lim_{h \to 0} \frac{\sin(2h)}{h} \times \lim_{h \to 0} \frac{1}{\left\{\cos(2x+1)\cos(2x+2h+1)\right\}}$$

To apply sandwich theorem ,we need 2h in denominator, So multiplying by 2 in numerator and denominator by 2.

$$\therefore f'(x) = 2 \lim_{h \to 0} \frac{\sin(2h)}{2h} \times \lim_{h \to 0} \frac{1}{\{\cos(2x+1)\cos(2x+2h+1)\}}$$

Use the formula -  $\lim_{x \to 0} \frac{\sin x}{x} = 1$ 

$$\Rightarrow f'(x) = 2 \times \frac{1}{\cos^2(2x+1)}$$

 $f'(x) = 2 \sec^2(2x + 1)$ 

Hence,

Derivative of f(x) = tan(2x + 1) is  $2 sec^2 (2x + 1)$ 

# 4 C. Question

Differentiate the following from first principles

tan 2x

# Answer

We need to find derivative of f(x) = tan (2x)

Derivative of a function f(x) is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where $h$ is a very small positive number}}$ 

 $\therefore$  derivative of f(x) = tan (2x) is given as -

$$\begin{aligned} f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{\tan(2(x+h)) - \tan(2x)}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{\tan(2x+2h) - \tan(2x)}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{\frac{\sin(2x+2h)}{\cos(2x+2h)} - \frac{\sin(2x)}{\cos(2x)}}{h} \end{aligned}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\cos(2x)\sin(2x+2h) - \sin(2x)\cos(2x+2h)}{h\{\cos(2x)\cos(2x+2h)\}}$$

Using: sin A cos B - cos A sin B = sin (A - B)

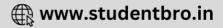
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sin(2x + 2h - 2x)}{h \{\cos(2x)\cos(2x + 2h)\}}$$

Using algebra of limits we have -

$$\therefore f'(x) = \lim_{h \to 0} \frac{\sin(2h)}{h} \times \lim_{h \to 0} \frac{1}{\left\{\cos(2x)\cos(2x+2h)\right\}}$$

To apply sandwich theorem ,we need 2h in denominator, So multiplying by 2 in numerator and denominator by 2.

 $\therefore f'(x) = 2 \lim_{h \to 0} \frac{\sin(2h)}{2h} \times \lim_{h \to 0} \frac{1}{\{\cos(2x)\cos(2x+2h)\}}$ 



Use the formula  $-\lim_{x \to 0} \frac{\sin x}{x} = 1$ 

$$\Rightarrow f'(x) = 2 \times \frac{1}{\cos^2(2x)}$$

 $\therefore f'(x) = 2 \sec^2(2x)$ 

Hence,

Derivative of f(x) = tan(2x) is  $2 \sec^2(2x)$ 

# 4 D. Question

Differentiate the following from first principles

√tan x

# Answer

We need to find derivative of  $f(x) = \sqrt{\tan x}$ 

Derivative of a function f(x) is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where h is a very small positive number}}$ 

 $\therefore$  derivative of f(x) =  $\sqrt{\tan x}$  is given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sqrt{\tan(x+h)} - \sqrt{\tan x}}{h}$$

As the limit takes 0/0 form on putting h = 0. So we need to remove the indeterminate form. As the numerator expression has square root terms so we need to multiply numerator and denominator by  $\sqrt{tan} (x + h) + \sqrt{tan x}$ .

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sqrt{\tan(x+h)} - \sqrt{\tan x}}{h} \times \lim_{h \to 0} \frac{\sqrt{\tan(x+h)} + \sqrt{\tan x}}{\sqrt{\tan(x+h)} + \sqrt{\tan x}}$$

Using  $(a + b)(a - b) = a^2 - b^2$ , we have -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\left(\sqrt{\tan(x+h)}\right)^2 - \left(\sqrt{\tan x}\right)^2}{h\left(\sqrt{\tan(x+h)} + \sqrt{\tan x}\right)}$$

Using algebra of limits, we have -

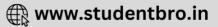
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\tan(x+h) - \tan x}{h} \times \lim_{h \to 0} \frac{1}{\sqrt{\tan(x+h)} + \sqrt{\tan x}}$$
$$\Rightarrow f'(x) = \frac{1}{\sqrt{\tan(x+0)} + \sqrt{\tan x}} \times \lim_{h \to 0} \frac{\tan(x+h) - \tan x}{h}$$
$$\Rightarrow f'(x) = \frac{1}{2\sqrt{\tan x}} \lim_{h \to 0} \frac{\frac{\sin(x+h) - \sin(x)}{\cos(x+h)}}{h}$$
$$\Rightarrow f'(x) = \frac{1}{2\sqrt{\tan x}} \lim_{h \to 0} \frac{\cos(x) \sin(x+h) - \sin(x) \cos(x+h)}{h}$$

Using: sin A cos B - cos A sin B = sin (A - B)

$$\Rightarrow f'(x) = \frac{1}{2\sqrt{\tan x} \ln \phi} \frac{\sin(x+h-x)}{h \left\{\cos(x)\cos(x+h)\right\}}$$

Using algebra of limits we have -

$$\therefore f'(x) = \frac{1}{2\sqrt{\tan x}} \lim_{h \to 0} \frac{\sin(h)}{h} \times \lim_{h \to 0} \frac{1}{\left\{\cos(x)\cos(x+h)\right\}}$$



Use the formula  $-\lim_{x\to 0} \frac{\sin x}{x} = 1$ 

$$\Rightarrow f'(x) = \frac{1}{2\sqrt{\tan x}} \times \frac{1}{\cos^2(x)}$$

 $\therefore f(x) = \frac{1}{2\sqrt{\tan x}}$ 

Hence,

Derivative of  $f(x) = \sqrt{\tan(x)}$  is  $\frac{\sec^2 x}{2\sqrt{\tan x}}$ 

# 5 A. Question

Differentiate the following from first principles

 $\sin \sqrt{2x}$ 

# Answer

We need to find derivative of  $f(x) = \sin \sqrt{2x}$ 

Derivative of a function f(x) from first principle is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where $h$ is a very small positive number}}$ 

 $\therefore$  derivative of f(x) =  $\sin \sqrt{2x}$  is given as -

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sin\sqrt{2(x+h)} - \sin\sqrt{2x}}{h}$$

Use:  $\sin A - \sin B = 2 \cos ((A + B)/2) \sin ((A - B)/2)$ 

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{2 \cos\left(\frac{\sqrt{2x+2h}+\sqrt{2x}}{2}\right) \sin\left(\frac{\sqrt{2x+2h}-\sqrt{2x}}{2}\right)}{h}$$

Using algebra of limits, we have -

$$\Rightarrow f'(x) = 2 \lim_{h \to 0} \cos\left(\frac{\sqrt{2x+2h} + \sqrt{2x}}{2}\right) \times \lim_{h \to 0} \frac{\sin\frac{\sqrt{2x+2h} - \sqrt{2x}}{2}}{h}$$
$$\Rightarrow f'(x) = 2 \cos\left(\frac{\sqrt{2x+2(0)} + \sqrt{2x}}{2}\right) \times \lim_{h \to 0} \frac{\sin\left(\frac{\sqrt{2x+2h} - \sqrt{2x}}{2}\right)}{h}$$
$$\Rightarrow f'(x) = 2 \cos\sqrt{2x} \times \lim_{h \to 0} \frac{\sin\left(\frac{\sqrt{2x+2h} - \sqrt{2x}}{2}\right)}{h}$$
As,  $h \to 0 \Rightarrow \sqrt{2x+2h} - \sqrt{2x} \to 0$ 

 $\therefore$  To use the sandwich theorem to evaluate the limit, we need  $\frac{\sqrt{2x+2h}-\sqrt{2x}}{2}$  in denominator. So multiplying this in numerator and denominator.

$$\Rightarrow f'(x) = 2\cos\sqrt{2x} \times \lim_{h \to 0} \frac{\sin\left(\frac{\sqrt{2x+2h}-\sqrt{2x}}{2}\right)}{h\left(\frac{\sqrt{2x+2h}-\sqrt{2x}}{2}\right)} \times \left(\frac{\sqrt{2x+2h}-\sqrt{2x}}{2}\right)$$

Using algebra of limits -

 $\Rightarrow f'(x) = 2\cos\sqrt{2x} \times \lim_{h \to 0} \frac{\sin\left(\frac{\sqrt{2x+2h}-\sqrt{2x}}{2}\right)}{\left(\frac{\sqrt{2x+2h}-\sqrt{2x}}{2}\right)} \times \lim_{h \to 0} \frac{\sqrt{2x+2h}-\sqrt{2x}}{2h}$ 

Get More Learning Materials Here : 📕



# R www.studentbro.in

Use the formula:  $\lim_{x \to 0} \frac{\sin x}{x} = 1$ 

$$\therefore f'(x) = 2\cos\sqrt{2x} \times 1 \times \lim_{h \to 0} \frac{\sqrt{2x + 2h} - \sqrt{2x}}{2h}$$
$$\Rightarrow f'(x) = 2\cos\sqrt{2x} \lim_{h \to 0} \frac{\sqrt{2x + 2h} - \sqrt{2x}}{2h}$$
$$\Rightarrow f'(x) = 2\cos\sqrt{2x} \lim_{h \to 0} \frac{\sqrt{2x + 2h} - \sqrt{2x}}{2h}$$

Again we get an indeterminate form, so multiplying and dividing  $\sqrt{(2x + 2h)} + \sqrt{(2x)}$  to get rid of indeterminate form.

$$\therefore f'(x) = 2\cos\sqrt{2x}\lim_{h \to 0} \frac{\sqrt{2x+2h}-\sqrt{2x}}{2h} \times \frac{\sqrt{2x+2h}+\sqrt{2x}}{\sqrt{2x+2h}+\sqrt{2x}}$$

Using  $a^2 - b^2 = (a + b)(a - b)$ , we have -

$$\Rightarrow f'(x) = 2\cos\sqrt{2x}\lim_{h \to 0} \frac{(\sqrt{2x+2h})^2 - (\sqrt{2x})^2}{2h(\sqrt{2x+2h} + \sqrt{2x})}$$

Using algebra of limits we have -

$$\Rightarrow f'(x) = 2\cos\sqrt{2x}\lim_{h\to 0}\frac{2x+2h-2h}{2h} \times \lim_{h\to 0}\frac{1}{\sqrt{2x+2h}+\sqrt{2x}}$$
$$\Rightarrow f'(x) = 2\cos\sqrt{2x}\lim_{h\to 0}\frac{2h}{2h} \times \frac{1}{\sqrt{2x+2(0)}+\sqrt{2x}}$$
$$\Rightarrow f'(x) = 2\cos\sqrt{2x} \times \lim_{h\to 0}1 \times \frac{1}{2\sqrt{2x}}$$
$$\therefore f'(x) = \frac{\cos\sqrt{2x}}{\sqrt{2x}}$$

Hence,

Derivative of 
$$f(x) = \sin \sqrt{2x} = \frac{\cos \sqrt{2x}}{\sqrt{2x}}$$

## 5 B. Question

Differentiate the following from first principles

cos√x

#### Answer

We need to find derivative of  $f(x) = \cos \sqrt{x}$ 

Derivative of a function f(x) from first principle is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where h is a very small positive number}}$ 

 $\therefore$  derivative of f(x) =  $\cos \sqrt{x}$  is given as -

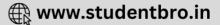
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\cos\sqrt{(x+h)} - \cos\sqrt{x}}{h}$$

Use:  $\cos A - \cos B = -2 \sin ((A + B)/2) \sin ((A - B)/2)$ 

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{-2\sin\left(\frac{\sqrt{x+h} + \sqrt{x}}{2}\right)\sin\left(\frac{\sqrt{x+h} - \sqrt{x}}{2}\right)}{h}$$

Using algebra of limits, we have -





$$\Rightarrow f'(x) = -2 \lim_{h \to 0} \sin\left(\frac{\sqrt{x+h} + \sqrt{x}}{2}\right) \times \lim_{h \to 0} \frac{\sin\frac{\sqrt{x+h} - \sqrt{x}}{2}}{h}$$
$$\Rightarrow f'(x) = -2 \sin\left(\frac{\sqrt{x+0} + \sqrt{x}}{2}\right) \times \lim_{h \to 0} \frac{\sin\left(\frac{\sqrt{x+h} - \sqrt{x}}{2}\right)}{h}$$
$$\Rightarrow f'(x) = -2 \sin\sqrt{x} \times \lim_{h \to 0} \frac{\sin\left(\frac{\sqrt{x+h} - \sqrt{x}}{2}\right)}{h}$$
As,  $h \to 0 \Rightarrow \sqrt{x+h} - \sqrt{x} \to 0$ 

 $\therefore$  To use the sandwich theorem to evaluate the limit, we need  $\frac{\sqrt{x+h}-\sqrt{x}}{2}$  in denominator. So multiplying this in numerator and denominator.

$$\Rightarrow f'(x) = -2\sin\sqrt{x} \times \lim_{h \to 0} \frac{\sin\left(\frac{\sqrt{x}+h-\sqrt{x}}{2}\right)}{h\left(\frac{\sqrt{x}+h-\sqrt{x}}{2}\right)} \times \left(\frac{\sqrt{x}+h-\sqrt{x}}{2}\right)$$

Using algebra of limits -

$$\Rightarrow f'(x) = -2\sin\sqrt{x} \times \lim_{h \to 0} \frac{\sin\left(\frac{\sqrt{x+h}-\sqrt{x}}{2}\right)}{\left(\frac{\sqrt{x+h}-\sqrt{x}}{2}\right)} \times \lim_{h \to 0} \frac{\sqrt{x+h}-\sqrt{x}}{2h}$$

Use the formula:  $\lim_{x \to 0} \frac{\sin x}{x} = 1$ 

$$\therefore f'(x) = -2\sin\sqrt{x} \times 1 \times \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{2h}$$
$$\Rightarrow f'(x) = -2\sin\sqrt{x} \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{2h}$$

Again, we get an indeterminate form, so multiplying and dividing  $\sqrt{(x + h)} + \sqrt{(x)}$  to get rid of indeterminate form.

$$\therefore f'(x) = -2\sin\sqrt{x} \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{2h} \times \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

Using  $a^2 - b^2 = (a + b)(a - b)$ , we have -

$$\Rightarrow f'(x) = -2 \sin \sqrt{x} \lim_{h \to 0} \frac{\left(\sqrt{x+h}\right)^2 - \left(\sqrt{x}\right)^2}{2h\left(\sqrt{x+h} + \sqrt{x}\right)}$$

Using algebra of limits we have -

$$\Rightarrow f'(x) = -2 \sin \sqrt{x} \lim_{h \to 0} \frac{x + h - x}{2h} \times \lim_{h \to 0} \frac{1}{\sqrt{x + h} + \sqrt{x}}$$
$$\Rightarrow f'(x) = -2 \sin \sqrt{x} \lim_{h \to 0} \frac{h}{2h} \times \frac{1}{\sqrt{x + (0)} + \sqrt{x}}$$
$$\Rightarrow f'(x) = -2 \sin \sqrt{x} \times \lim_{h \to 0} \frac{1}{2} \times \frac{1}{2\sqrt{x}}$$
$$\therefore f'(x) = \frac{-\sin \sqrt{x}}{2\sqrt{x}}$$

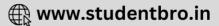
Hence,

Derivative of  $f(x) = \cos \sqrt{x} = \frac{-\sin \sqrt{x}}{2\sqrt{x}}$ 

# 5 C. Question

Differentiate the following from first principles

 $\tan \sqrt{x}$ 



#### Answer

We need to find derivative of  $f(x) = \tan \sqrt{x}$ 

Derivative of a function f(x) from first principle is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where h is a very small positive number}}$ 

 $\therefore$  derivative of f(x) =  $\tan \sqrt{x}$  is given as –

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
  

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\tan\sqrt{(x+h)} - \tan\sqrt{x}}{h}$$
  

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\frac{\sin\sqrt{(x+h)} - \frac{\sin\sqrt{x}}{h}}{-\cos\sqrt{x}}}{h}$$
  

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\cos\sqrt{x}\sin\sqrt{x+h} - \cos\sqrt{x} + h\sin\sqrt{x}}{h\cos\sqrt{x}\cos(\sqrt{x+h})}$$

$$h \rightarrow 0$$
  $n \cos \sqrt{x} \cos(\sqrt{x} + n)$ 

Use the formula: sin (A - B) = sin A cos B - cos A sin B

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sin\{\sqrt{x+h} - \sqrt{x}\}}{h \cos \sqrt{x} \cos(\sqrt{x+h})}$$

Using algebra of limits, we have -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sin(\sqrt{x+h} - \sqrt{x})}{h} \times \lim_{h \to 0} \frac{1}{\cos\sqrt{x}\cos(\sqrt{x+h})}$$

$$\Rightarrow f'(x) = \frac{1}{\cos\sqrt{x}\cos\sqrt{x+0}} \times \lim_{h \to 0} \frac{\sin(\sqrt{x+h} - \sqrt{x})}{h}$$

$$\Rightarrow f'(x) = \frac{1}{\cos^2\sqrt{x}} \times \lim_{h \to 0} \frac{\sin(\sqrt{x+h} - \sqrt{x})}{h}$$

$$\Rightarrow f'(x) = \frac{1}{\cos^2\sqrt{x}} \times \lim_{h \to 0} \frac{\sin(\sqrt{x+h} - \sqrt{x})}{h}$$

$$As, h \to 0 \Rightarrow \sqrt{x+h} - \sqrt{x} \to 0$$

 $\therefore$  To use the sandwich theorem to evaluate the limit, we need  $\sqrt{x + h} - \sqrt{x}$  in denominator. So multiplying this in numerator and denominator.

$$\Rightarrow f'(x) = \frac{1}{\cos^2 \sqrt{x}} \times \lim_{h \to 0} \frac{\sin(\sqrt{x+h} - \sqrt{x})}{h(\sqrt{x+h} - \sqrt{x})} \times (\sqrt{x+h} - \sqrt{x})$$

Using algebra of limits -

$$\Rightarrow f'(x) = \frac{1}{\cos^2 \sqrt{x}} \times \lim_{h \to 0} \frac{\sin(\sqrt{x+h} - \sqrt{x})}{(\sqrt{x+h} - \sqrt{x})} \times \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

Use the formula:  $\lim_{x \to 0} \frac{\sin x}{x} = 1$ 

$$\therefore f'(x) = \frac{1}{\cos^2 \sqrt{x}} \times 1 \times \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$
$$\Rightarrow f'(x) = \frac{1}{\cos^2 \sqrt{x}} \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h}$$

Again, we get an indeterminate form, so multiplying and dividing  $\sqrt{(x + h)} + \sqrt{(x)}$  to get rid of indeterminate form.

CLICK HERE

>>

$$\therefore f'(x) = \frac{1}{\cos^2 \sqrt{x}} \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \times \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}}$$

Using  $a^2 - b^2 = (a + b)(a - b)$ , we have -

$$\Rightarrow f'(x) = \frac{1}{\cos^2 \sqrt{x}} \lim_{h \to 0} \frac{\left(\sqrt{x+h}\right)^2 - \left(\sqrt{x}\right)^2}{h\left(\sqrt{x+h} + \sqrt{x}\right)}$$

Using algebra of limits we have -

$$\Rightarrow f'(x) = \frac{1}{\cos^2 \sqrt{x}} \lim_{h \to 0} \frac{x + h - x}{h} \times \lim_{h \to 0} \frac{1}{\sqrt{x + h} + \sqrt{x}}$$

$$\Rightarrow f'(x) = \frac{1}{\cos^2 \sqrt{x}} \lim_{h \to 0} \frac{h}{h} \times \frac{1}{\sqrt{x + (0)} + \sqrt{x}}$$

$$\Rightarrow f'(x) = \frac{1}{\cos^2 \sqrt{x}} \times \lim_{h \to 0} 1 \times \frac{1}{2\sqrt{x}}$$

$$\therefore f'(x) = \frac{\sec^2 \sqrt{x}}{2\sqrt{x}}$$

Hence,

Derivative of f(x) = tan  $\sqrt{x} = \frac{\sec^2 \sqrt{x}}{2\sqrt{x}}$ 

# 5 D. Question

Differentiate the following from first principles

 $\tan x^2$ 

# Answer

We need to find derivative of  $f(x) = \tan x^2$ 

Derivative of a function f(x) from first principle is given by -

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \text{ {where h is a very small positive number}}$ 

 $\therefore$  derivative of f(x) = tan x<sup>2</sup> is given as -

$$\begin{aligned} f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{\tan(x+h)^2 - \tan x^2}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{\frac{\sin(x+h)^2}{\cos(x+h)^2} \frac{\sin x^2}{\cos x^2}}{h} \\ \Rightarrow f'(x) &= \lim_{h \to 0} \frac{\cos x^2 \sin(x+h)^2 - \cos(x+h)^2 \sin x^2}{h \cos x^2 \cos(x+h)^2} \end{aligned}$$

Use the formula: sin (A - B) = sin A cos B - cos A sin B

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sin\{(x+h)^2 - x^2\}}{h \cos x^2 \cos(x+h)^2}$$

Using algebra of limits, we have -

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sin(x^2 + 2hx + h^2 - x^2)}{h} \times \lim_{h \to 0} \frac{1}{\cos x^2 \cos(x + h)^2}$$
$$\Rightarrow f'(x) = \frac{1}{\cos x^2 \cos(x + 0)^2} \times \lim_{h \to 0} \frac{\sin(2hx + h^2)}{h}$$
$$\Rightarrow f'(x) = \frac{1}{\cos^2(x^2)} \times \lim_{h \to 0} \frac{\sin(2hx + h^2)}{h}$$
$$As, h \to 0 \Rightarrow 2hx + h^2 \to 0$$

 $\therefore$  To use the sandwich theorem to evaluate the limit, we need  $2hx + h^2$  in denominator. So multiplying this in numerator and denominator.

$$\Rightarrow f'(x) = \sec^2 x^2 \times \lim_{h \to 0} \frac{\sin(2hx + h^2)}{h(2hx + h^2)} \times (2hx + h^2)$$

Using algebra of limits -

 $\Rightarrow f'(x) = \sec^2 x^2 \times \lim_{h \to 0} \frac{\sin(2hx + h^2)}{(2hx + h^2)} \times \lim_{h \to 0} \frac{h(2x + h)}{h}$  $\Rightarrow f'(x) = \sec^2 x^2 \times \lim_{h \to 0} \frac{\sin(2hx + h^2)}{(2hx + h^2)} \times \lim_{h \to 0} 2x + h$ Use the formula:  $\lim_{x \to 0} \frac{\sin x}{x} = 1$  $\therefore f'(x) = \sec^2 x^2 \times 1 \times (2x + 0)$  $\therefore f'(x) = 2x \sec^2 x^2$ 

Hence,

Derivative of  $f(x) = \tan x^2 = 2x \sec^2 x^2$ 

# Exercise 30.3

# 1. Question

Differentiate the following with respect to x:

 $x^{4} - 2\sin x + 3\cos x$ 

# Answer

Given,

 $f(x) = x^4 - 2\sin x + 3\cos x$ 

we need to find f'(x), so differentiating both sides with respect to x -

$$\frac{d}{dx}\left\{f(x)\right\} = \frac{d}{dx}\left(x^4 - 2\sin x + 3\cos x\right)$$

Using algebra of derivatives -

$$\Rightarrow f'(x) = \frac{d}{dx}(x^4) - 2\frac{d}{dx}(\sin x) + 3\frac{d}{dx}(\cos x)$$
  
Use the formula:  $\frac{d}{dx}(x^n) = nx^{n-1}$ ,  $\frac{d}{dx}(\sin x) = \cos x$ ,  $\frac{d}{dx}(\cos x) = -\sin x$   
 $\therefore f'(x) = 4x^{4-1} - 2\cos x + 3(-\sin x)$   
 $\Rightarrow f'(x) = 4x^3 - 2\cos x - 3\sin x$ 

# 2. Question

Differentiate the following with respect to x:

 $3^{x} + x^{3} + 3^{3}$ 

# Answer

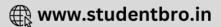
Given,

$$f(x) = 3^{x} + x^{3} + 3^{3}$$

we need to find f'(x), so differentiating both sides with respect to x –

$$\frac{d}{dx}\left\{f(x)\right\} = \frac{d}{dx}\left(3^{x} + x^{3} + 3^{3}\right)$$

Get More Learning Materials Here :



Using algebra of derivatives -

$$\Rightarrow f'(x) = \frac{d}{dx}(3^{x}) + \frac{d}{dx}(x^{3}) + \frac{d}{dx}(3^{3})$$
  
Use the formula:  $\frac{d}{dx}(x^{n}) = nx^{n-1}$ ,  $\frac{d}{dx}(a^{x}) = a^{x}\log a$ ,  $\frac{d}{dx}(\text{constant}) = 0$   
 $\therefore f'(x) = 3^{x}\log_{e} 3 - 3x^{3-1} + 0$ 

 $\Rightarrow$  f'(x) = 3<sup>x</sup> log<sub>e</sub> 3 - 3x<sup>2</sup>

# 3. Question

Differentiate the following with respect to x:

$$\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}$$

#### Answer

Given,

$$f(x) = \frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}$$

we need to find f'(x), so differentiating both sides with respect to x –

$$\frac{d}{dx}\left\{f(x)\right\} = \frac{d}{dx}\left(\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\right)$$

Using algebra of derivatives -

$$\Rightarrow f'(x) = \frac{d}{dx} \left( \frac{x^3}{3} \right) - 2 \frac{d}{dx} \left( \sqrt{x} \right) + 5 \frac{d}{dx} \left( \frac{1}{x^2} \right)$$
  

$$\Rightarrow f'(x) = \frac{1}{3} \frac{d}{dx} \left( x^3 \right) - 2 \frac{d}{dx} \left( x^{\frac{1}{2}} \right) + 5 \frac{d}{dx} \left( x^{-2} \right)$$
  
Use the formula:  $\frac{d}{dx} \left( x^n \right) = nx^{n-1}$   

$$\therefore f'(x) = \frac{1}{3} \left( 3x^{3-1} \right) - 2 \times \frac{1}{2} x^{\frac{1}{2}-1} + 5(-2)x^{-2-1}$$
  

$$\Rightarrow f'(x) = 3 \times \frac{1}{3} x^2 - x^{-\frac{1}{2}} - 10x^{-3}$$
  

$$\therefore f'(x) = x^2 - x^{(-1/2)} - 10x^{-3}$$

# 4. Question

Differentiate the following with respect to x:

e<sup>x log a</sup> + e<sup>a log x</sup> + e<sup>a log a</sup>

## Answer

Given,

$$f(x) = e^{x \log a} + e^{a \log x} + e^{a \log a}$$

$$\Rightarrow f(x) = e^{\log a^{x}} + e^{\log e^{x^{a}}} + e^{\log e^{a^{a}}}$$

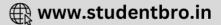
We know that,  $e^{\log f(x)} = f(x)$ 

$$\therefore f(x) = a^{x} + x^{a} + a^{a}$$

we need to find f'(x), so differentiating both sides with respect to x –

$$\frac{d}{dx} \{ f(x) \} = \frac{d}{dx} \left( a^x + x^a + a^a \right)$$





Using algebra of derivatives -

$$\Rightarrow f'(x) = \frac{d}{dx}(a^{x}) + \frac{d}{dx}(x^{a}) + \frac{d}{dx}(a^{a})$$
  
Use the formula:  $\frac{d}{dx}(x^{n}) = nx^{n-1}$ ,  $\frac{d}{dx}(a^{x}) = a^{x}\log a$ ,  $\frac{d}{dx}(\text{constant}) = 0$   
 $\therefore f'(x) = a^{x}\log_{e} a - ax^{a-1} + 0$ 

 $\Rightarrow$  f'(x) = a<sup>x</sup> log<sub>e</sub> a - ax<sup>a - 1</sup>

# 5. Question

Differentiate the following with respect to x:

 $(2x^2 + 1)(3x + 2)$ 

#### Answer

Given,

 $f(x) = (2x^2 + 1)(3x + 2)$ 

$$\Rightarrow f(x) = 6x^3 + 4x^2 + 3x + 2$$

we need to find f'(x), so differentiating both sides with respect to x –

$$\frac{d}{dx}{f(x)} = \frac{d}{dx}(6x^3 + 4x^2 + 3x + 2)$$

Using algebra of derivatives -

$$\Rightarrow f'(x) = 6\frac{d}{dx}(x^3) + 4\frac{d}{dx}(x^2) + 3\frac{d}{dx}(x) + \frac{d}{dx}(2)$$
  
Use the formula:  $\frac{d}{dx}(x^n) = nx^{n-1}$  and  $\frac{d}{dx}(constant) = 0$   
 $\therefore f'(x) = 6(3x^{3-1}) + 4(2x^{2-1}) + 3(x^{1-1}) + 0$   
 $\Rightarrow f'(x) = 18x^2 + 8x + 3 + 0$   
 $\therefore f'(x) = 18x^2 + 8x + 3$ 

# 6. Question

Differentiate the following with respect to x:

 $\log_3 x + 3\log_e x + 2 \tan x$ 

#### Answer

Given,

$$f(x) = \log_3 x + 3\log_e x + 2 \tan x$$

we need to find f'(x), so differentiating both sides with respect to x –

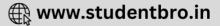
$$\frac{d}{dx}{f(x)} = \frac{d}{dx} (\log_3 x + 3\log_e x + 2\tan x)$$

Using algebra of derivatives -

$$\Rightarrow f'(x) = \frac{d}{dx}(\log_3 x) + 3\frac{d}{dx}(\log_e x) + 2\frac{d}{dx}(\tan x)$$

Use the formula: 
$$\frac{d}{dx}(\log_a x) = \frac{1}{x \log_e a}$$
 and  $\frac{d}{dx}(\tan x) = \sec^2 x$ 

$$f'(\mathbf{x}) = \frac{1}{\mathrm{xlog}_{e^3}} + \frac{3}{\mathrm{xlog}_{e^e}} + 2 \sec^2 \mathbf{x}$$



$$\Rightarrow f'(x) = \frac{1}{x \log_e 3} + \frac{3}{x} + 2 \sec^2 x$$
$$\therefore f'(x) = \frac{1}{x \log_e 3} + \frac{3}{x} + 2 \sec^2 x$$

# 7. Question

Differentiate the following with respect to x:

$$\left(x+\frac{1}{x}\right)\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)$$

## Answer

Given,

$$f(x) = \left(x + \frac{1}{x}\right) \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)$$
$$\Rightarrow f(x) = x\sqrt{x} + \frac{x}{\sqrt{x}} + \frac{\sqrt{x}}{x} + \frac{1}{x\sqrt{x}}$$
$$\Rightarrow f(x) = x^{3/2} + x^{1/2} + x^{-1/2} + x^{-3/2}$$

we need to find f'(x), so differentiating both sides with respect to x –

$$\frac{d}{dx} \{ f(x) \} = \frac{d}{dx} \left( x^{\frac{3}{2}} + x^{\frac{1}{2}} + x^{-\frac{1}{2}} + x^{-\frac{3}{2}} \right)$$

Using algebra of derivatives -

$$\Rightarrow f'(x) = \frac{d}{dx} \left( x^{\frac{3}{2}} \right) + \frac{d}{dx} \left( x^{\frac{1}{2}} \right) + \frac{d}{dx} \left( x^{-\frac{1}{2}} \right) + \frac{d}{dx} \left( x^{-3/2} \right)$$
Use the formula:  $\frac{d}{dx} (x^n) = nx^{n-1} \text{ and } \frac{d}{dx} (\text{constant}) = 0$   
 $\therefore f'(x) = \frac{3}{2} x^{\frac{3}{2}-1} + \frac{1}{2} x^{\frac{1}{2}-1} + \left( -\frac{1}{2} \right) x^{-\frac{1}{2}-1} + \left( -\frac{3}{2} \right) x^{-\frac{3}{2}-1}$ 
  
 $\Rightarrow f'(x) = \frac{3}{2} x^{\frac{1}{2}} + \frac{1}{2} x^{-\frac{1}{2}} - \frac{1}{2} x^{-\frac{3}{2}} - \frac{3}{2} x^{-\frac{5}{2}}$ 
  
 $\Rightarrow f'(x) = \frac{3}{2} \sqrt{x} + \frac{1}{2\sqrt{x}} - \frac{1}{2x\sqrt{x}} - \frac{3}{2x^2\sqrt{x}}$ 
  
 $\therefore f'(x) = \frac{3}{2} \sqrt{x} + \frac{1}{2\sqrt{x}} - \frac{1}{2x\sqrt{x}} - \frac{3}{2x^2\sqrt{x}}$ 

# 8. Question

Differentiate the following with respect to x:

$$\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^3$$

# Answer

Given,

$$f(x) = \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^3$$

Using  $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ 

$$\Rightarrow f(x) = \left(\sqrt{x}\right)^3 + \frac{3\left(\sqrt{x}\right)^2}{\sqrt{x}} + \frac{3\sqrt{x}}{\left(\sqrt{x}\right)^2} + \frac{1}{\left(\sqrt{x}\right)^3}$$
$$\Rightarrow f(x) = x^{3/2} + x^{1/2} + x^{-1/2} + x^{-3/2}$$



we need to find f'(x), so differentiating both sides with respect to x –

$$\frac{d}{dx} \{ f(x) \} = \frac{d}{dx} \left( x^{\frac{3}{2}} + 3x^{\frac{1}{2}} + 3x^{-\frac{1}{2}} + x^{-\frac{3}{2}} \right)$$

Using algebra of derivatives -

$$\Rightarrow f'(x) = \frac{d}{dx} \left( x^{\frac{3}{2}} \right) + 3 \frac{d}{dx} \left( x^{\frac{1}{2}} \right) + 3 \frac{d}{dx} \left( x^{-\frac{1}{2}} \right) + \frac{d}{dx} \left( x^{-3/2} \right)$$
Use the formula:  $\frac{d}{dx} (x^n) = nx^{n-1} \text{ and } \frac{d}{dx} (\text{constant}) = 0$ 

$$\therefore f'(x) = \frac{3}{2} x^{\frac{3}{2}-1} + \frac{3}{2} x^{\frac{1}{2}-1} + \left( -\frac{3}{2} \right) x^{-\frac{1}{2}-1} + \left( -\frac{3}{2} \right) x^{-\frac{3}{2}-1}$$

$$\Rightarrow f'(x) = \frac{3}{2} x^{\frac{1}{2}} + \frac{3}{2} x^{-\frac{1}{2}} - \frac{3}{2} x^{-\frac{3}{2}} - \frac{3}{2} x^{-\frac{5}{2}}$$

$$\Rightarrow f'(x) = \frac{3}{2} \sqrt{x} + \frac{3}{2\sqrt{x}} - \frac{3}{2x\sqrt{x}} - \frac{3}{2x^2\sqrt{x}}$$

$$\therefore f'(x) = \frac{3}{2} \sqrt{x} + \frac{3}{2\sqrt{x}} - \frac{3}{2x\sqrt{x}} - \frac{3}{2x^2\sqrt{x}}$$

## 9. Question

Differentiate the following with respect to x:

$$\frac{2x^2 + 3x + 4}{x}$$

## Answer

Given,

$$f(x) = \frac{2x^2 + 3x + 4}{x}$$
  

$$\Rightarrow f(x) = 2x + 3 + \frac{4}{x}$$
  

$$\Rightarrow f(x) = 2x + 3 + 4x^{-1}$$

we need to find f'(x), so differentiating both sides with respect to x -

$$\frac{d}{dx}\left\{f(x)\right\} = \frac{d}{dx}\left(2x + 3 + 4x^{-1}\right)$$

Using algebra of derivatives -

$$\Rightarrow f'(x) = 2 \frac{d}{dx}(x) + \frac{d}{dx}(3) + 4 \frac{d}{dx}(x^{-1})$$
  
Use the formula:  $\frac{d}{dx}(x^n) = nx^{n-1}$  and  $\frac{d}{dx}(constant) = 0$   
 $\therefore f'(x) = 2 + 0 + 4(-1)x^{-1-1}$   
 $\Rightarrow f'(x) = 2 - 4x^{-2}$   
 $\therefore f'(x) = 2 - 4x^{-2}$ 

# 10. Question

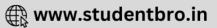
Differentiate the following with respect to x:

$$\frac{\left(x^3 + 1\right)\!\left(x - 2\right)}{x^2}$$

# Answer

Get More Learning Materials Here : 📕

#### 



Given,

$$f(x) = \frac{(x^3 + 1)(x-2)}{x^2}$$
  

$$\Rightarrow f(x) = \frac{x^4 - 2x^3 + x - 2}{x^2}$$
  

$$\Rightarrow f(x) = x^2 - 2x + x^{-1} - 2x^{-2}$$

we need to find f'(x), so differentiating both sides with respect to x -

$$\frac{d}{dx} \{ f(x) \} = \frac{d}{dx} \left( x^2 - 2x + x^{-1} - 2x^{-2} \right)$$

Using algebra of derivatives -

 $\Rightarrow f'(x) = \frac{d}{dx}(x^2) - 2\frac{d}{dx}(x) + \frac{d}{dx}(x^{-1}) - 2\frac{d}{dx}(x^{-2})$ Use the formula:  $\frac{d}{dx}(x^n) = nx^{n-1}$  and  $\frac{d}{dx}(constant) = 0$  $\therefore f'(x) = 2x^{2-1} + 2x^{1-1} + (-1)x^{-1-1} - 2(-2)x^{-2-1}$  $\Rightarrow f'(x) = 2x + 2x^0 - 1x^{-2} + 4x^{-3}$  $\therefore f'(x) = 2x + 2 - x^{-2} + 4x^{-3}$ 

#### 11. Question

Differentiate the following with respect to x:

 $\frac{a\cos x + b\sin x + c}{\sin x}$ 

# Answer

Given,

 $f(x) = \frac{a\cos x + b\sin x + c}{\sin x}$   $\Rightarrow f(x) = a \frac{\cos x}{\sin x} + b + \frac{c}{\sin x}$  $\Rightarrow f(x) = a \cot x + b + c \operatorname{cosec} x$ 

we need to find f'(x), so differentiating both sides with respect to x –

$$\frac{d}{dx} \{f(x)\} = \frac{d}{dx} (a \cot x + b + c \operatorname{cosec} x)$$

Using algebra of derivatives -

$$\Rightarrow f'(x) = a \frac{d}{dx} (\cot x) + \frac{d}{dx} (b) + c \frac{d}{dx} (\operatorname{cosec} x)$$

Use the formula:  $\frac{d}{dx}(\cot x) = -\csc^2 x \& \frac{d}{dx}(\csc x) = -\csc x \cot x$ 

$$\therefore f'(x) = a(-\csc^2 x) + 0 + c(-\csc x \cot x)$$

$$\Rightarrow$$
 f'(x) = - a cosec<sup>2</sup> x - c cosec x cot x

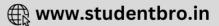
 $\therefore$  f'(x) = - a cosec<sup>2</sup> x - c cosec x cot x

#### 12. Question

Differentiate the following with respect to x:

#### Answer





Given,

$$f(x) = 2 \sec x + 3 \cot x - 4 \tan x$$

we need to find f'(x), so differentiating both sides with respect to x –

$$\frac{d}{dx} \{ f(x) \} = \frac{d}{dx} (2 \sec x + 3 \cot x - 4 \tan x)$$

Using algebra of derivatives -

$$\Rightarrow f'(x) = 2\frac{d}{dx}(\sec x) + 3\frac{d}{dx}(\cot x) - 4\frac{d}{dx}(\tan x)$$

Use the formula:

$$\frac{d}{dx}(\cot x) = -\csc^2 x, \frac{d}{dx}(\sec x) = \sec x \tan x \,\& \frac{d}{dx}(\tan x) = \sec^2 x$$
  
$$\therefore f'(x) = 2(\sec x \tan x) + 3(-\csc^2 x) - 4(\sec^2 x)$$
  
$$\Rightarrow f'(x) = 2\sec x \tan x - 3\csc^2 x - 4\sec^2 x$$
  
$$\therefore f'(x) = 2\sec x \tan x - 3\csc^2 x - 4\sec^2 x$$

#### 13. Question

Differentiate the following with respect to x:

$$a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n$$

## Answer

Given,

$$f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n$$

we need to find f'(x), so differentiating both sides with respect to x -

$$\dot{\cdot} \frac{d}{dx} \{ f(x) \} = \frac{d}{dx} (a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n)$$

Using algebra of derivatives -

$$\Rightarrow f'(x) = \frac{d}{dx}(a_0x^n) + a_1\frac{d}{dx}(x^{n-1}) + \dots + a_{n-1}\frac{d}{dx}(x) + a_n\frac{d}{dx}(1)$$
Use the formula:  $\frac{d}{dx}(x^n) = nx^{n-1}$  and  $\frac{d}{dx}(constant) = 0$ 

$$\therefore f'(x) = a_0 n x^{n-1} + a_1 (n-1) x^{n-1-1} + a_2(n-2) x^{n-2-1} + \dots + a_{n-1} + 0$$

$$\Rightarrow f'(x) = a_0 n x^{n-1} + a_1 (n-1) x^{n-2} + a_2(n-2) x^{n-3} + \dots + a_{n-1}$$

$$\therefore f'(x) = a_0 n x^{n-1} + a_1 (n-1) x^{n-2} + a_2(n-2) x^{n-3} + \dots + a_{n-1}$$

# 14. Question

Differentiate the following with respect to x:

$$\frac{1}{\sin x} + 2^{x+3} + \frac{4}{\log_x 3}$$

#### Answer

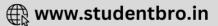
Given,

$$f(x) = \frac{1}{\sin x} + 2^{x+3} + \frac{4}{\log_x 3}$$

using change of base formula for log, we can write -

Get More Learning Materials Here : 📕

CLICK HERE



 $\log_x 3 = (\log_e 3)/(\log_e x)$ 

$$\therefore f(x) = \csc x + 2^{3}2^{x} + 4 \frac{\log_{e} x}{\log_{e} 3}$$
$$\Rightarrow f(x) = \csc x + 8 \cdot 2^{x} + 4 \frac{\log_{e} x}{\log_{e} 3}$$

we need to find f'(x), so differentiating both sides with respect to x –

$$\therefore \frac{d}{dx} \{f(x)\} = \frac{d}{dx} \left( \operatorname{cosec} x + 8.2^{x} + 4 \frac{\log_{e} x}{\log_{e} 3} \right)$$

Using algebra of derivatives -

$$\Rightarrow f'(x) = \frac{d}{dx}(\operatorname{cosec} x) + 8\frac{d}{dx}(2^x) + \frac{4}{\log_e 3}\frac{d}{dx}(\log_e x)$$

Use the formula:

$$\frac{d}{dx}(\operatorname{cosec} x) = -\operatorname{cosec} x \cot x, \frac{d}{dx}(a^{x}) = a^{x} \log_{e} a \, \& \frac{d}{dx}(\log_{e} x) = \frac{1}{x}$$
$$\therefore f'(x) = 2(-\operatorname{cosec} x \cot x) + 8(2^{x} \log_{e} 2) - 4/(\log_{e} 3) (1/x)$$
$$\Rightarrow f'(x) = -2\operatorname{cosec} x \cot x + 2^{x+3} \log_{e} 2 + \frac{4}{x \log_{e} 3}$$
$$\therefore f'(x) = -2\operatorname{cosec} x \cot x + 2^{x+3} \log_{e} 2 + \frac{4}{x \log_{e} 3}$$

## 15. Question

Differentiate the following with respect to x:

$$\frac{(x+5)(2x^2-1)}{x}$$

# Answer

Given,

$$f(x) = \frac{(x+5)(2x^2-1)}{x}$$
  

$$\Rightarrow f(x) = \frac{2x^3 + 10x^2 - x - 5}{x}$$
  

$$\Rightarrow f(x) = 2x^2 + 10x - 1 - 5x^{-1}$$

we need to find f'(x), so differentiating both sides with respect to x -

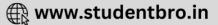
$$\frac{d}{dx}{f(x)} = \frac{d}{dx} (2x^2 + 10x - 1 - 5x^{-1})$$

Using algebra of derivatives -

 $\Rightarrow f'(x) = 2 \frac{d}{dx}(x^{2}) + 10 \frac{d}{dx}(x) - \frac{d}{dx}(1) - 5 \frac{d}{dx}(x^{-1})$ Use the formula:  $\frac{d}{dx}(x^{n}) = nx^{n-1}$  and  $\frac{d}{dx}(constant) = 0$  $\therefore f'(x) = 2(2x^{2} - 1) + 10(1) - (-1)(0) - 5(-1)x^{-1} - 1$  $\Rightarrow f'(x) = 4x + 10 + 0 + 5x^{-2}$  $\therefore f'(x) = 4x + 10 + 5x^{-2}$ **16. Question** 

Differentiate the following with respect to x:





$$\log\!\left(\frac{1}{\sqrt{x}}\right) + 5x^a - 3a^x + \sqrt[3]{x^2} + 6\sqrt[4]{x^{-3}}$$

### Answer

 $f(x) = \log\left(\frac{1}{\sqrt{x}}\right) + 5x^{a} - 3a^{x} + \sqrt[a]{x^{2}} + 6\sqrt[4]{x^{-3}}$  $\Rightarrow f(x) = \log\left(x^{-\frac{1}{2}}\right) + 5x^{a} - 3a^{x} + x^{\frac{2}{a}} + 6x^{-3/4}$  $\Rightarrow f(x) = -0.5 \log x + 5x^{a} - 3a^{x} + x^{2/3} + 6x^{-3/4}$ 

we need to find f'(x), so differentiating both sides with respect to x –

$$\frac{d}{dx}\{f(x)\} = \frac{d}{dx}\left(-0.5\log x + 5x^{a} - 3a^{x} + x^{\frac{2}{a}} + 6x^{-3/4}\right)$$

Using algebra of derivatives -

$$\Rightarrow f'(x) = -\frac{1}{2} \frac{d}{dx} (\log x) + 5 \frac{d}{dx} (x^{a}) - 3 \frac{d}{dx} (a^{x}) + \frac{d}{dx} (x^{\frac{2}{a}}) + 6 \frac{d}{dx} (x^{-\frac{3}{4}})$$

Use the formula:

$$\frac{d}{dx}(x^{n}) = nx^{n-1}, \frac{d}{dx}(\log_{e}x) = \frac{1}{x}, \frac{d}{dx}(a^{x}) = a^{x}\log_{e}a$$
  
$$\therefore f'(x) = -\frac{1}{2x} + 5ax^{a-1} - 3a^{x}\log_{e}a + \frac{2}{3}x^{\frac{2}{3}-1} + 6\left(-\frac{3}{4}\right)x^{-\frac{3}{4}-1}$$
  
$$\Rightarrow f'(x) = -\frac{1}{2x} + 5ax^{a-1} - 3a^{x}\log_{e}a + \frac{2}{3}x^{-\frac{1}{2}} - \frac{9}{2}x^{-\frac{7}{4}}$$
  
$$\therefore f'(x) = -\frac{1}{2x} + 5ax^{a-1} - 3a^{x}\log_{e}a + \frac{2}{3}x^{-\frac{1}{2}} - \frac{9}{2}x^{-\frac{7}{4}}$$

### 17. Question

Differentiate the following with respect to x:

 $\cos(x + a)$ 

#### Answer

Given,

 $f(x) = \cos \left( x + a \right)$ 

Using  $\cos (A + B) = \cos A \cos B - \sin A \sin B$ , we get -

 $\therefore$  f(x) = cos x cos a - sin x sin a

we need to find f'(x), so differentiating both sides with respect to x -

$$\frac{d}{dx} \{f(x)\} = \frac{d}{dx} (\cos x \cos a - \sin x \sin a)$$

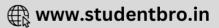
Using algebra of derivatives -

$$\Rightarrow f'(x) = \frac{d}{dx}(\cos x \, \cos a) - \frac{d}{dx}(\sin x \, \sin a)$$

As cos a and sin a are constants, so using algebra of derivatives we have -

$$\Rightarrow f'(x) = \cos a \frac{d}{dx} (\cos x) - \sin a \frac{d}{dx} (\sin x)$$

Use the formula:



$$\frac{d}{dx}(\cos x) = -\sin x \& \frac{d}{dx}\sin x = \cos x$$
  

$$\therefore f'(x) = -\sin x \cos a - \sin a \cos x$$
  

$$\Rightarrow f'(x) = -(\sin x \cos a + \sin a \cos x)$$
  
Using sin (A + B) = sin A cos B + cos A sin B, we get -

 $\therefore f'(x) = -\sin(x + a)$ 

# 18. Question

Differentiate the following with respect to x:

 $\cos(x-2)$ 

sin x

# Answer

Given,

$$f(x) = \frac{\cos(x-2)}{\sin x}$$

Using  $\cos (A + B) = \cos A \cos B - \sin A \sin B$ , we get -

$$\therefore f(x) = \frac{\cos x \cos 2 - \sin x \sin 2}{\sin x}$$

$$\Rightarrow$$
 f(x) = cos 2 cot x - sin 2

we need to find f'(x), so differentiating both sides with respect to x -

$$\frac{d}{dx} \{f(x)\} = \frac{d}{dx} \left(\cot x \cos 2 - \sin 2\right)$$

Using algebra of derivatives -

$$\Rightarrow f'(x) = \frac{d}{dx}(\cot x \cos 2) - \frac{d}{dx}(\sin 2)$$

As cos a and sin a are constants, so using algebra of derivatives we have -

$$\Rightarrow f'(x) = \cos 2 \frac{d}{dx} (\cot x) - \sin 2 \frac{d}{dx} (1)$$

Use the formula:

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$
  

$$\therefore f'(x) = -\csc^2 x \cos 2 - \sin 2 (0)$$
  

$$\Rightarrow f'(x) = -\csc^2 x \cos 2 - 0$$
  

$$\therefore f'(x) = -\csc^2 x \cos 2$$

# **19. Question**

If 
$$y = \left(\sin\frac{x}{2} + \cos\frac{x}{2}\right)^2$$
, find  $\frac{dy}{dx}$  at  $x = \frac{\pi}{6}$ 

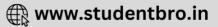
# Answer

Given,

$$y = \left(\sin\frac{x}{2} + \cos\frac{x}{2}\right)^2$$
  
Using  $(a + b)^2 = a^2 + 2ab + b^2$ 

Get More Learning Materials Here : 📕

#### 



$$y = \sin^{2} \frac{x}{2} + 2\sin \frac{x}{2} \cos \frac{x}{2} + \cos^{2} \frac{x}{2}$$
  

$$\Rightarrow y = 1 + 2\sin \frac{x}{2} \cos \frac{x}{2} \{\because \sin^{2}A + \cos^{2}A = 1 \& 2\sin A \cos A = \sin 2A\}$$
  

$$\Rightarrow y = 1 + \sin x$$

Now, differentiating both sides w.r.t x -

$$\frac{dy}{dx} = \frac{d}{dx}(1 + \sin x)$$

Using algebra of derivatives -

$$\Rightarrow \frac{dy}{dx} = \frac{d}{dx}(1) + \frac{d}{dx}(\sin x)$$
  
Use:  $\frac{d}{dx}(\text{constant}) = 0 \& \frac{d}{dx}(\sin x) = \cos x$ 

$$\frac{dy}{dx} = 0 + \cos x = \cos x$$

Hence, dy/dx at  $x = \pi/6$  is

$$\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\mathrm{at \, x} = \frac{\pi}{6}} = \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2} \dots \mathrm{ans}$$

#### 20. Question

If 
$$y = \left(\frac{2 - 3\cos x}{\sin x}\right)$$
, find  $\frac{dy}{dx}$  at  $x = \frac{\pi}{4}$ 

#### Answer

Given,

 $y = \frac{2 - 3\cos x}{\sin x}$  $y = \frac{2}{\sin x} - 3 \frac{\cos x}{\sin x}$ 

$$\Rightarrow$$
 y = 2 cosec x - 3 cot x

Now, differentiating both sides w.r.t x -

$$\frac{dy}{dx} = \frac{d}{dx} (2 \operatorname{cosec} x - 3 \operatorname{cot} x)$$

Using algebra of derivatives -

$$\Rightarrow \frac{dy}{dx} = 2 \frac{d}{dx} (\operatorname{cosec} x) - 3 \frac{d}{dx} (\operatorname{cot} x)$$
  
Use:  $\frac{d}{dx} (\operatorname{cosec} x) = -\operatorname{cosec} x \cot x \& \frac{d}{dx} (\cot x) = -\operatorname{cosec}^2 x$   
 $\therefore \frac{dy}{dx} = -2\operatorname{cosec} x \cot x - 3(-\operatorname{cosec}^2 x)$ 

Hence, dy/dx at  $x = \pi/4$  is

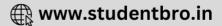
$$\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\mathrm{at\,x}=\frac{\pi}{4}} = -2\mathrm{cosec}\left(\frac{\pi}{4}\right)\mathrm{cot}\left(\frac{\pi}{4}\right) + 3\,\mathrm{cosec}^2\left(\frac{\pi}{4}\right) = -2\sqrt{2} + 6\,\,...\,\mathrm{ans}$$

## 21. Question

Find the slope of the tangent to the curve  $f(x) = 2x^6 + x^4 - 1$  at x = 1.

# Answer

Given,



 $y = 2x^6 + x^4 - 1$ 

We need to find slope of tangent of f(x) at x = 1.

Slope of the tangent is given by value of derivative at that point. So we need to find dy/dx first.

As, 
$$y = 2x^6 + x^4 - 1$$

Now, differentiating both sides w.r.t x -

$$\frac{dy}{dx} = \frac{d}{dx}(2x^6 + x^4 - 1)$$

Using algebra of derivatives -

$$\Rightarrow \frac{dy}{dx} = 2\frac{d}{dx}(x^{6}) + \frac{d}{dx}(x^{4}) - \frac{d}{dx}(1)$$
  
Use:  $\frac{d}{dx}(x^{n}) = nx^{n-1} \& \frac{d}{dx}(constant) = 0$   
 $\therefore \frac{dy}{dx} = 2(6)x^{6-1} + 4x^{4-1} - 0$   
 $\Rightarrow \frac{dy}{dx} = 12x^{5} + 4x^{3} - 0$ 

As, slope of tangent at x = 1 will be given by the value of dy/dx at x = 1

$$\left(\frac{dy}{dx}\right)_{at x=1} = 12(1^5) + 4(1^3) = 16 \dots ans$$

# 22. Question

If 
$$\sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}$$
, prove that:  $2xy \frac{dy}{dx} = \left(\frac{x}{a} - \frac{a}{x}\right)$ 

Answer

Given,

$$y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}$$

We need to prove:  $2x \frac{dy}{dx} = \left(\frac{x}{a} - \frac{a}{x}\right)$ 

As, 
$$y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}$$
 .... equation 1

Now, differentiating both sides w.r.t x -

$$\frac{dy}{dx} = \frac{d}{dx}\left(\sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}\right)$$

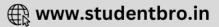
Using algebra of derivatives -

$$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{a}} \frac{d}{dx} \left( x^{\frac{1}{2}} \right) + \sqrt{a} \frac{d}{dx} \left( x^{-\frac{1}{2}} \right)$$
Use:  $\frac{d}{dx} (x^n) = nx^{n-1}$ 

$$\therefore \frac{dy}{dx} = \frac{1}{\sqrt{a}} \left( \frac{1}{2} \right) x^{\frac{1}{2}-1} + \sqrt{a} \left( -\frac{1}{2} \right) x^{-\frac{1}{2}-1}$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{2\sqrt{a}} x^{-\frac{1}{2}} - \frac{\sqrt{a}}{2} x^{-\frac{3}{2}}$$

$$\Rightarrow 2 \frac{dy}{dx} = \frac{1}{\sqrt{a}\sqrt{x}} - \frac{\sqrt{a}}{x\sqrt{x}}$$



Multiplying x both sides -

$$\Rightarrow 2x \frac{dy}{dx} = \frac{x}{\sqrt{a}\sqrt{x}} - \frac{\sqrt{a}}{\sqrt{x}}$$
$$\Rightarrow 2x \frac{dy}{dx} = \frac{\sqrt{x}}{\sqrt{a}} - \frac{\sqrt{a}}{\sqrt{x}}$$

Now, multiplying y both sides -

 $\Rightarrow 2xy \frac{dy}{dx} = y \left( \frac{\sqrt{x}}{\sqrt{a}} - \frac{\sqrt{a}}{\sqrt{x}} \right)$  $\Rightarrow 2xy \frac{dy}{dx} = \left( \frac{\sqrt{x}}{\sqrt{a}} + \frac{\sqrt{a}}{\sqrt{x}} \right) \left( \frac{\sqrt{x}}{\sqrt{a}} - \frac{\sqrt{a}}{\sqrt{x}} \right) \{ \text{from equation 1} \}$ 

Using  $(a + b)(a - b) = a^2 - b^2$ 

$$\Rightarrow 2xy \frac{dy}{dx} = \left(\frac{\sqrt{x}}{\sqrt{a}}\right)^2 - \left(\frac{\sqrt{a}}{\sqrt{x}}\right)^2$$
$$\Rightarrow 2xy \frac{dy}{dx} = \left(\frac{x}{a} - \frac{a}{x}\right) \dots \dots \text{ proved}$$

# 23. Question

Find the rate at which the function  $f(x) = x^4 - 2x^3 + 3x^2 + x + 5$  changes with respect to x.

#### Answer

Given,

$$y = x^4 - 2x^3 + 3x^2 + x + 5$$

We need to rate of change of f(x) w.r.t x.

Rate of change of a function w.r.t a given variable is obtained by differentiating the function w.r.t that variable only.

So in this case we will be finding dy/dx

As,  $y = x^4 - 2x^3 + 3x^2 + x + 5$ 

Now, differentiating both sides w.r.t x -

$$\frac{dy}{dx} = \frac{d}{dx}(x^4 - 2x^3 + 3x^2 + x + 5)$$

Using algebra of derivatives -

$$\Rightarrow \frac{dy}{dx} = \frac{d}{dx}(x^4) - 2\frac{d}{dx}(x^3) + 3\frac{d}{dx}(x^2) + \frac{d}{dx}(x) + \frac{d}{dx}(5)$$
Use:  $\frac{d}{dx}(x^n) = nx^{n-1} \& \frac{d}{dx}(constant) = 0$   
 $\therefore \frac{dy}{dx} = 4x^{4-1} - 2(3)x^{3-1} + 3(2)x^{2-1} + 1 + 0$   
 $\Rightarrow \frac{dy}{dx} = 4x^3 - 6x^2 + 6x + 1$ 

: Rate of change of y w.r.t x is given by  $-\frac{dy}{dx} = 4x^3 - 6x^2 + 6x + 1$ 

# 24. Question

If 
$$y = \frac{2x^9}{3} - \frac{5}{7}x^7 + 6x^3 - x$$
, find  $\frac{dy}{dx}at x = 1$ 

# Answer

Given,

# Get More Learning Materials Here : 📕

# Regional www.studentbro.in

$$y = \frac{2x^9}{3} - \frac{5}{7}x^7 + 6x^3 - x$$

We need to find dy/dx at x = 1

As, 
$$y = \frac{2x^9}{3} - \frac{5}{7}x^7 + 6x^3 - x$$

Now, differentiating both sides w.r.t x -

$$\frac{dy}{dx} = \frac{d}{dx} \left( \frac{2x^9}{3} - \frac{5}{7}x^7 + 6x^3 - x \right)$$

Using algebra of derivatives -

$$\Rightarrow \frac{dy}{dx} = \frac{2}{3} \frac{d}{dx} (x^9) - \frac{5}{7} \frac{d}{dx} (x^7) + 6 \frac{d}{dx} (x^3) - \frac{d}{dx} (x)$$
  
Use:  $\frac{d}{dx} (x^n) = nx^{n-1} \& \frac{d}{dx} (\text{constant}) = 0$   
 $\therefore \frac{dy}{dx} = \frac{2}{3} (9) x^{9-1} - \frac{5}{7} (7) x^{7-1} + 6 (3) x^{3-1} - 1$   
 $\Rightarrow \frac{dy}{dx} = 6x^8 - 5x^6 + 18x^2 - 1$   
 $\therefore \left(\frac{dy}{dx}\right)_{\text{at } x = 1} = 6(1^8) - 5(1^6) + 18(1^2) - 1 = 18 \dots \text{ ans}$ 

### 25. Question

If for  $f(x) = \lambda x^2 + \mu x + 12$ , f' (4) = 15 and f' (2) = 11, then find  $\lambda$  and  $\mu$ .

# Answer

Given,

 $y = \lambda x^2 + \mu x + 12$ 

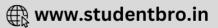
Now, differentiating both sides w.r.t x -

$$\frac{dy}{dx} = \frac{d}{dx}(\lambda x^2 + \mu x + 12)$$

Using algebra of derivatives -

$$\Rightarrow \frac{dy}{dx} = \lambda \frac{d}{dx} (x^2) + \mu \frac{d}{dx} (x) + \frac{d}{dx} (12)$$
Use:  $\frac{d}{dx} (x^n) = nx^{n-1} \& \frac{d}{dx} (\text{constant}) = 0$ 
 $\therefore \frac{dy}{dx} = \lambda(2)x^{2-1} + \mu = 2\lambda x + \mu$ 
Now, we have -
 $f'(x) = 2\lambda x + \mu$ 
Given,
 $f'(4) = 15$ 
 $\Rightarrow 2\lambda (4) + \mu = 15$ 
 $\Rightarrow 8\lambda + \mu = 15$  .....equation 1
Also  $f'(2) = 11$ 
 $\Rightarrow 2\lambda(2) + \mu = 11$ 
 $\Rightarrow 4\lambda + \mu = 11$  .....equation 2
Subtracting equation 2 from equation 1, we have -





 $4\lambda = 15 - 11 = 4$ 

 $\therefore \lambda = 1$ 

Putting  $\lambda = 1$  in equation 2

 $4 + \mu = 11$ 

 $\therefore \mu = 7$ 

Hence,

 $\lambda=1 \;\&\; \mu=7$ 

# 26. Question

For the function  $f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + \dots + \frac{x^2}{2} + x + 1$ . Prove that f'(1) = 100 f' (0).

# Answer

Given,

$$f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + \dots + \frac{x^2}{2} + x + 1$$

Now, differentiating both sides w.r.t x -

$$\frac{d}{dx}{f(x)} = \frac{d}{dx}\left(\frac{x^{100}}{100} + \frac{x^{99}}{99} + \dots + \frac{x^2}{2} + x + 1\right)$$

Using algebra of derivatives -

$$\Rightarrow f'(x) = \frac{1}{100 \, dx} (x^{100}) + \frac{1}{99 \, dx} (x^{99}) + \dots + \frac{1}{2} \frac{d}{dx} (x^2) + \frac{d}{dx} (x) + \frac{d}{dx} (1)$$
Use:  $\frac{d}{dx} (x^n) = nx^{n-1} \& \frac{d}{dx} (\text{constant}) = 0$ 
 $\therefore f'(x) = \frac{100}{100} x^{99} + \frac{99}{99} x^{98} + \dots + \frac{2}{2} x + 1 + 0$ 
 $\Rightarrow f'(x) = x^{99} + x^{98} + \dots + x + 1$ 
 $\therefore f'(1) = 1^{99} + 1^{98} + \dots + 1 + 1 \text{ (sum of total 100 ones)} = 100$ 
 $\therefore f'(1) = 100$ 
As,  $f'(0) = 0 + 0 + \dots + 0 + 1 = 1$ 
 $\therefore$  we can write as
 $f'(1) = 100 \times 1 = 100 \times f'(0)$ 

Hence,

 $f'(1) = 100 f'(0) \dots proved$ 

# Exercise 30.4

# 1. Question

Differentiate the following functions with respect to x:

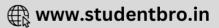
x<sup>3</sup> sin x

# Answer

Let,  $y = x^3 \sin x$ 

We have to find dy/dx





As we can observe that y is a product of two functions say u and v where,

 $u = x^3$  and v = sin x

As we know that to find the derivative of product of two function we apply product rule of differentiation. By product rule, we have –

$$\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$$
...equation 1

As, 
$$u = x^3$$

$$\frac{du}{dx} = 3x^{3-1} = 3x^2 \dots \text{equation 2} \left\{ \frac{d}{dx}(x^n) = nx^{n-1} \right\}$$

As, v = sin x

$$\frac{dv}{dx} = \frac{d}{dx}(\sin x) = \cos x \dots \text{equation 3} \{ \because \frac{d}{dx}(\sin x) = \cos x \}$$

 $\therefore$  from equation 1, we can find dy/dx

$$\begin{aligned} &\therefore \frac{dy}{dx} = x^3 \frac{dv}{dx} + \sin x \frac{du}{dx} \\ \Rightarrow \frac{dy}{dx} = x^3 \cos x + 3x^2 \sin x \text{ {using equation 2 & 3}} \end{aligned}$$

Hence,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^3 \cos x + 3x^2 \sin x \dots \text{ ans}$$

# 2. Question

Differentiate the following functions with respect to x:

x<sup>3</sup> e<sup>x</sup>

# Answer

Let,  $y = x^3 e^x$ 

We have to find dy/dx

As we can observe that y is a product of two functions say u and v where,

$$u = x^3$$
 and  $v = e^x$ 

As we know that to find the derivative of product of two function we apply product rule of differentiation.

**CLICK HERE** 

≫

🕀 www.studentbro.in

By product rule, we have -

 $\begin{array}{l} \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \dots \text{equation 1} \\\\ \text{As, } u = x^3 \\\\ \therefore \frac{du}{dx} = 3x^{3-1} = 3x^2 \dots \text{equation 2} \{ \because \frac{d}{dx}(x^n) = nx^{n-1} \} \\\\ \text{As, } v = e^x \\\\ \therefore \frac{dv}{dx} = \frac{d}{dx}(e^x) = e^x \dots \text{equation 3} \{ \because \frac{d}{dx}(e^x) = e^x \} \\\\ \therefore \text{ from equation 1, we can find dy/dx} \end{array}$ 

$$\begin{array}{l} \therefore \frac{dy}{dx} = x^3 \frac{dv}{dx} + e^x \frac{du}{dx} \\ \Rightarrow \frac{dy}{dx} = x^3 e^x + 3x^2 e^x \text{ {using equation 2 & 3}} \end{array}$$

Hence,

 $\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 \mathrm{e}^{\mathrm{x}}(\mathrm{x} + 3) \dots \mathrm{ans}$ 

# 3. Question

Differentiate the following functions with respect to x:

# x<sup>2</sup> e<sup>x</sup> log x

# Answer

Let,  $y = x^2 e^x \log x$ 

We have to find dy/dx

As we can observe that y is a product of three functions say u, v & w where,

$$u = x^2$$

$$v = e^{x}$$

$$w = \log x$$

As we know that to find the derivative of product of three function we apply product rule of differentiation.

CLICK HERE

≫

🕀 www.studentbro.in

By product rule, we have -

$$\frac{dy}{dx} = uw \frac{dv}{dx} + vw \frac{du}{dx} + uv \frac{dw}{dx} \dots equation 1$$
As,  $u = x^2$ 

$$\therefore \frac{du}{dx} = 2x^{2-1} = 2x \dots equation 2 \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$$
As,  $v = e^x$ 

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(e^x) = e^x \dots equation 3 \{\because \frac{d}{dx}(e^x) = e^x\}$$
As,  $w = \log x$ 

$$\therefore \frac{dw}{dx} = \frac{d}{dx}(\log x) = \frac{1}{x} \dots equation 4 \{\because \frac{d}{dx}(\log_e x) = \frac{1}{x}\}$$

$$\therefore from equation 1, we can find dy/dx$$

$$\therefore \frac{dy}{dx} = x^2 \log x \frac{dv}{dx} + e^x \log x \frac{du}{dx} + x^2 e^x \frac{dw}{dx}$$

$$\Rightarrow \frac{dy}{dx} = x^2 e^x \log x + 2x e^x \log x + x^2 e^x \frac{1}{x} \{using equation 2, 3 \& 4\}$$

Hence,

 $\frac{dy}{dx} = xe^{x}(x \log x + 2\log x + 1) \dots ans$ 

# 4. Question

Differentiate the following functions with respect to x:

x<sup>n</sup> tan x

# Answer

Let,  $y = x^n \tan x$ 

We have to find dy/dx

As we can observe that y is a product of two functions say u and v where,

 $u = x^n$  and v = tan x

 $\therefore$  y = uv

As we know that to find the derivative of product of two function we apply product rule of differentiation.

By product rule, we have -

$$\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \dots \text{equation 1}$$
As,  $u = x^{n}$ 

$$\therefore \frac{du}{dx} = nx^{n-1} \dots \text{equation 2} \{\because \frac{d}{dx}(x^{n}) = nx^{n-1}\}$$
As,  $v = \tan x$ 

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(\tan x) = \sec^{2} x \dots \text{equation 3} \{\because \frac{d}{dx}(\tan x) = \sec^{2} x\}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$\therefore \frac{dy}{dx} = x^{n} \frac{dv}{dx} + \tan x \frac{du}{dx}$$

$$\Rightarrow \frac{dy}{dx} = x^{n} \sec^{2} x + nx^{n-1} \tan x \{\text{using equation 2 & 3}\}$$

Hence,

 $\frac{dy}{dx} = x^n \sec^2 x + nx^{n-1} \tan x \dots ans$ 

# 5. Question

Differentiate the following functions with respect to x:

x<sup>n</sup> log<sub>a</sub> x

## Answer

Let,  $y = x^n \log_a x$ 

We have to find dy/dx

As we can observe that y is a product of two functions say u and v where,

 $u = x^n$  and  $v = \log_a x$ 

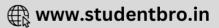
 $\therefore$  y = uv

As we know that to find the derivative of product of two function we apply product rule of differentiation.

By product rule, we have -

$$\begin{array}{l} \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \dots \text{equation 1} \\ \\ \text{As, } u = x^n \\ \\ \therefore \frac{du}{dx} = nx^{n-1} \dots \text{equation 2} \left\{ \because \frac{d}{dx}(x^n) = nx^{n-1} \right\} \\ \\ \text{As, } v = \log_a x \end{array}$$





$$\therefore \frac{dv}{dx} = \frac{d}{dx}(\log_a x) = \frac{1}{x\log_e a} \dots \text{equation 3} \{ \because \frac{d}{dx}(\log_a x) = \frac{1}{x\log_e a} \}$$

 $\therefore$  from equation 1, we can find dy/dx

$$\begin{array}{l} \therefore \frac{dy}{dx} = x^{n} \frac{dv}{dx} + \log_{a} x \frac{du}{dx} \\ \Rightarrow \frac{dy}{dx} = x^{n} \frac{1}{x \log_{e} a} + n x^{n-1} \log_{a} x \text{ {using equation 2 & 3}} \end{array}$$

Hence,

$$\frac{dy}{dx} = x^{n-1} \left( \frac{1}{\log_e a} + n \log_a x \right) \dots ans$$

# 6. Question

Differentiate the following functions with respect to x:

 $(x^3 + x^2 + 1) \sin x$ 

# Answer

Let,  $y = (x^3 + x^2 + 1) \sin x$ 

We have to find dy/dx

As we can observe that y is a product of two functions say u and v where,

$$u = x^3 + x^2 + 1$$
 and  $v = \sin x$   
 $\therefore y = uv$ 

As we know that to find the derivative of product of two function we apply product rule of differentiation.

**CLICK HERE** 

≫

Regional www.studentbro.in

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx} \dots \text{equation 1}$$
As,  $u = x^3 + x^2 + 1$ 

$$\therefore \frac{du}{dx} = \frac{d}{dx}(x^3 + x^2 + 1)$$

$$\Rightarrow \frac{du}{dx} = 3x^2 + 2x \dots \text{equation 2} \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$$
As,  $v = \sin x$ 

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(\sin x) = \cos x \dots \text{equation 3} \{\because \frac{d}{dx}(\sin x) = \cos x\}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$\therefore \frac{dy}{dx} = (x^3 + x^2 + 1)\frac{dv}{dx} + \sin x\frac{du}{dx}$$

$$\Rightarrow \frac{dy}{dx} = (x^3 + x^2 + 1)\cos x + (3x^2 + 2x)\sin x \{\text{using equation } 2 \& 3\}$$

Hence,

 $\frac{dy}{dx} = (x^3 + x^2 + 1)\cos x + (3x^2 + 2x)\sin x \dots ans$ 

# 7. Question

Differentiate the following functions with respect to x:

cos x sin x

Answer

Let,  $y = \cos x \sin x$ 

We have to find dy/dx

As we can observe that y is a product of two functions say u and v where,

$$u = \cos x$$
 and  $v = \sin x$ 

 $\therefore$  y = uv

As we know that to find the derivative of product of two function we apply product rule of differentiation.

By product rule, we have -

$$\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \dots \text{equation 1}$$
As,  $u = \cos x$ 

$$\therefore \frac{du}{dx} = \frac{d}{dx}(\cos x) = -\sin x \dots \text{equation 2} \{\because \frac{d}{dx}(\cos x) = -\sin x\}$$
As,  $v = \sin x$ 

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(\sin x) = \cos x \dots \text{equation 3} \{\because \frac{d}{dx}(\sin x) = \cos x\}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$\therefore \frac{dy}{dx} = \cos x \frac{dv}{dx} + \sin x \frac{du}{dx}$$

$$\Rightarrow \frac{dy}{dx} = \cos x(\cos x) + \sin x(-\sin x) \{\text{using equation 2 \& 3}\}$$

$$\Rightarrow \frac{dy}{dx} = \cos x (\cos x) + \sin x (-\sin x) \{\text{using equation } 2\}$$

$$\Rightarrow \frac{dy}{dx} = \cos^2 x - \sin^2 x$$

Hence,

 $\frac{dy}{dx} = \cos^2 x - \sin^2 x \quad .... ans$ 

# 8. Question

Differentiate the following functions with respect to x:

$$\frac{2^{x} \cot x}{\sqrt{x}}$$

# Answer

Let, 
$$y = \frac{2^{x} \cot x}{\sqrt{x}} = 2^{x} \cot x x^{-\frac{1}{2}}$$

We have to find dy/dx

As we can observe that y is a product of three functions say u, v & w where,

$$u = x^{-1/2}$$

 $v = 2^{x}$ 

 $w = \cot x$ 

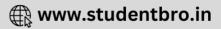
∴ y = uvw

As we know that to find the derivative of product of three function we apply product rule of differentiation.

By product rule, we have -

 $\frac{dy}{dx} = uw\frac{dv}{dx} + vw\frac{du}{dx} + uv\frac{dw}{dx}$ ...equation 1





As, 
$$u = x^{-1/2}$$
  

$$\therefore \frac{du}{dx} = -\frac{1}{2}x^{-\frac{1}{2}-1} = -\frac{1}{2}x^{-\frac{3}{2}} \dots \text{equation 2} \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$$
As,  $v = 2^x$   

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(2^x) = 2^x \log_e 2 \dots \text{equation 3} \{\because \frac{d}{dx}(a^x) = a^x \log a\}$$
As,  $w = \cot x$   

$$\therefore \frac{dw}{dx} = \frac{d}{dx}(\cot x) = -\csc^2 x \dots \text{equation 4} \{\because \frac{d}{dx}(\cot x) = -\csc^2 x\}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$\therefore \frac{dy}{dx} = x^{-\frac{1}{2}} \cot x \frac{dv}{dx} + 2^x \cot x \frac{du}{dx} + x^{-\frac{1}{2}} 2^x \frac{dw}{dx}$$

using equation 2, 3 & 4, we have -

$$\Rightarrow \frac{dy}{dx} = x^{-\frac{1}{2}} \cot x \, 2^{x} \log 2 + 2^{x} \cot x \left(-\frac{1}{2}x^{-\frac{3}{2}}\right) + x^{-\frac{1}{2}} 2^{x} (-\csc^{2} x)$$

Hence,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2^{x} x^{-\frac{1}{2}} (\log 2 \cot x - \frac{\cot x}{2x} - \csc^{2} x) \dots \text{ ans}$$

# 9. Question

Differentiate the following functions with respect to x:

 $x^2 \sin x \log x$ 

# Answer

Let,  $y = x^2 \sin x \log x$ 

We have to find dy/dx

As we can observe that y is a product of three functions say u, v & w where,

 $u = x^2$ 

- v = sin x
- $w = \log x$

 $\therefore$  y = uvw

As we know that to find the derivative of product of three function we apply product rule of differentiation.

By product rule, we have -

$$\frac{dy}{dx} = uw\frac{dv}{dx} + vw\frac{du}{dx} + uv\frac{dw}{dx} \dots \text{equation 1}$$
As,  $u = x^2$ 

$$\therefore \frac{du}{dx} = 2x^{2-1} = 2x \dots \text{equation 2} \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$$
As,  $v = \sin x$ 

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(\sin x) = \cos x \dots \text{equation 3} \{\because \frac{d}{dx}(\sin x) = \cos x\}$$
As,  $w = \log x$ 

$$\therefore \frac{dw}{dx} = \frac{d}{dx}(\log x) = \frac{1}{x} \dots \text{equation 4} \{\because \frac{d}{dx}(\log_e x) = \frac{1}{x}\}$$

Get More Learning Materials Here : 💻

CLICK HERE

# Regional www.studentbro.in

 $\therefore$  from equation 1, we can find dy/dx

$$\frac{dy}{dx} = x^2 \log x \frac{dv}{dx} + \sin x \log x \frac{du}{dx} + x^2 \sin x \frac{dw}{dx}$$

using equation 2, 3 & 4, we have -

$$\Rightarrow \frac{dy}{dx} = x^2 \cos x \log x + 2x \sin x \log x + x^2 \sin x \frac{1}{x}$$

Hence,

 $\frac{dy}{dx} = x^2 \cos x \log x + 2x \sin x \log x + x \sin x \dots \text{ ans}$ 

## 10. Question

Differentiate the following functions with respect to x:

 $x^5 e^x + x^6 \log x$ 

# Answer

Let,  $y = x^5 e^x + x^6 \log x$ 

Let,  $A = x^5 e^x$  and  $B = x^6 \log x$ 

$$\therefore$$
 y = A + B

$$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\mathrm{dA}}{\mathrm{dx}} + \frac{\mathrm{dB}}{\mathrm{dx}}$$

We have to find dA/dx first

As we can observe that A is a product of two functions say u and v where,

 $u = x^5$  and  $v = e^x$ 

 $\therefore A = uv$ 

As we know that to find the derivative of product of two function we apply product rule of differentiation.

By product rule, we have -

$$\frac{dA}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \dots \text{equation 1}$$
As,  $u = x^5$ 

$$\therefore \frac{du}{dx} = 5x^{5-1} = 5x^4 \dots \text{equation 2} \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$$
As,  $v = e^x$ 

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(e^x) = e^x \dots \text{equation 3} \{\because \frac{d}{dx}(e^x) = e^x\}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$\therefore \frac{dA}{dx} = x^5 \frac{dv}{dx} + e^x \frac{du}{dx}$$

$$\Rightarrow \frac{dA}{dx} = x^5 e^x + 5x^4 e^x \{\text{using equation 2 \& 3}\}$$
Hence,

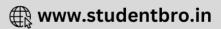
 $\frac{dA}{dx} = x^4 e^x (x + 5) \dots equation 4$ 

Now, we will find dB/dx first

As we can observe that A is a product of two functions say m and n where,

Get More Learning Materials Here : 🗾

CLICK HERE



$$m = x^6$$
 and  $n = \log x$ 

 $\therefore B = mn$ 

As we know that to find the derivative of product of two function we apply product rule of differentiation.

By product rule, we have -  $\frac{dB}{dx} = m \frac{dn}{dx} + m \frac{dm}{dx} \dots \text{equation 5}$ As,  $m = x^{6}$   $\therefore \frac{dm}{dx} = 6x^{6-1} = 6x^{5} \dots \text{equation 6} \{\because \frac{d}{dx}(x^{n}) = nx^{n-1}\}$ As,  $v = \log x$  $\therefore \frac{dv}{dx} = \frac{d}{dx}(\log x) = \frac{1}{x} \dots \text{equation 7} \{\because \frac{d}{dx}(\log x) = \frac{1}{x}\}$   $\therefore \text{ from equation 5, we can find dy/dx}$   $\therefore \frac{dB}{dx} = x^{6} \frac{dn}{dx} + \log x \frac{dm}{dx}$   $\Rightarrow \frac{dB}{dx} = x^{6} \frac{1}{x} + 6x^{5} \log x \text{ {using equation 6 & 7}}$ Hence,

 $\frac{dB}{dx} = x^{5}(1 + 6\log x) \dots \text{equation 8}$ As,  $\frac{dy}{dx} = \frac{dA}{dx} + \frac{dB}{dx}$ 

 $\therefore$  from equation 4 and 8, we have -

 $\frac{dy}{dx} = x^4 e^x (x + 5) + x^5 (1 + 6\log x) \dots ans$ 

# 11. Question

Differentiate the following functions with respect to x:

 $(x \sin x + \cos x)(x \cos x - \sin x)$ 

# Answer

Let,  $y = (x \sin x + \cos x)(x \cos x - \sin x)$ 

We have to find dy/dx

As we can observe that y is a product of two functions say u and v where,

$$u = x \sin x + \cos x$$
 and  $v = x \cos x - \sin x$ 

As we know that to find the derivative of product of two function we apply product rule of differentiation.

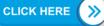
By product rule, we have -

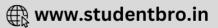
$$\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$$
...equation 1

As,  $u = x \sin x + \cos x$ 

$$\frac{du}{dx} = \frac{d}{dx}(x\sin x + \cos x)$$

Using algebra of derivatives -





$$\Rightarrow \frac{du}{dx} = \frac{d}{dx}(x\sin x) + \frac{d}{dx}(\cos x)$$
  
$$\because \frac{d}{dx}(\sin x) = \cos x \,\& \,\frac{d}{dx}(\cos x) = -\sin x$$
  
$$\because \frac{du}{dx} = x \frac{d}{dx}(\sin x) + \sin x \frac{d}{dx}(x) + \frac{d}{dx}(\cos x) \text{ {using product rule}}$$
  
$$\Rightarrow \frac{du}{dx} = x \cos x + \sin x - \sin x = x \cos x \dots \text{equation } 2$$

As,  $v = x \cos x - \sin x$ 

$$\therefore \frac{\mathrm{dv}}{\mathrm{dx}} = \frac{\mathrm{d}}{\mathrm{dx}} (x \cos x - \sin x)$$

Using algebra of derivatives -

$$\Rightarrow \frac{dv}{dx} = \frac{d}{dx}(x\cos x) - \frac{d}{dx}(\sin x)$$
  
$$\because \frac{d}{dx}(\sin x) = \cos x \& \frac{d}{dx}(\cos x) = -\sin x$$
  
$$\because \frac{dv}{dx} = x \frac{d}{dx}(\cos x) + \cos x \frac{d}{dx}(x) - \frac{d}{dx}(\sin x) \text{ {using product rule}}$$
  
$$\Rightarrow \frac{dv}{dx} = -x \sin x + \cos x - \cos x = -x \sin x \dots \text{equation 3}$$

 $\therefore$  from equation 1, we can find dy/dx

 $\frac{dy}{dx} = (x \sin x + \cos x) \frac{dv}{dx} + (x \cos x - \sin x) \frac{du}{dx}$ 

using equation 2 & 3, we get -

$$\Rightarrow \frac{dy}{dx} = (x \sin x + \cos x) (-x \sin x) + (x \cos x - \sin x) (x \cos x)$$
$$\Rightarrow \frac{dy}{dx} = x^2 (\cos^2 x - \sin^2 x) + x (\sin x \cos x + \cos x \sin x)$$

As, we know that:  $\cos^2 x - \sin^2 x = \cos 2x \& 2\sin x \cos x = \sin 2x$ 

# Hence,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 \cos 2x - x \sin 2x$$

# 12. Question

Differentiate the following functions with respect to x:

 $(x \sin x + \cos x)(e^x + x^2 \log x)$ 

# Answer

Let,  $y = (x \sin x + \cos x)(e^x + x^2 \log x)$ 

We have to find dy/dx

As we can observe that y is a product of two functions say u and v where,

 $u = x \sin x + \cos x$  and  $v = (e^{x} + x^{2} \log x)$ 

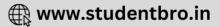
∴ y = uv

As we know that to find the derivative of product of two function we apply product rule of differentiation.

By product rule, we have -

 $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \dots \text{equation 1}$ 





As,  $u = x \sin x + \cos x$ 

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}(x\sin x + \cos x)$$

Using algebra of derivatives -

$$\Rightarrow \frac{du}{dx} = \frac{d}{dx}(x\sin x) + \frac{d}{dx}(\cos x)$$
  
$$\because \frac{d}{dx}(\sin x) = \cos x \& \frac{d}{dx}(\cos x) = -\sin x$$
  
$$\because \frac{du}{dx} = x \frac{d}{dx}(\sin x) + \sin x \frac{d}{dx}(x) + \frac{d}{dx}(\cos x) \text{ {using product rule}}$$
  
$$\Rightarrow \frac{du}{dx} = x \cos x + \sin x - \sin x = x \cos x \dots \text{equation } 2$$

As,  $v = e^x + x^2 \log x$ 

$$\therefore \frac{\mathrm{d} v}{\mathrm{d} x} = \frac{\mathrm{d}}{\mathrm{d} x} (\mathrm{e}^{\mathrm{x}} + \mathrm{x}^2 \log \mathrm{x})$$

Using algebra of derivatives -

$$\Rightarrow \frac{dv}{dx} = \frac{d}{dx}(e^{x}) + \frac{d}{dx}(x^{2}\log x)$$
  
$$\because \frac{d}{dx}(e^{x}) = e^{x} \& \frac{d}{dx}(\log x) = \frac{1}{x}$$
  
$$\because \frac{dv}{dx} = x^{2}\frac{d}{dx}(\log x) + \log x \frac{d}{dx}(x^{2}) + \frac{d}{dx}(e^{x}) \{\text{using product rule}\}$$
  
$$\Rightarrow \frac{dv}{dx} = \frac{x^{2}}{x} + 2x\log x + e^{x} = x + 2x\log x + e^{x} \dots \text{equation } 3$$

 $\div$  from equation 1, we can find dy/dx

$$\frac{dy}{dx} = (x \sin x + \cos x) \frac{dv}{dx} + (x^2 \log x + e^x) \frac{du}{dx}$$

using equation 2 & 3, we get -

$$\Rightarrow \frac{dy}{dx} = (x \sin x + \cos x)(x + 2x \log x + e^x) + (e^x + x^2 \log x)(x \cos x)$$
$$\Rightarrow \frac{dy}{dx} = (x \sin x + \cos x)(x + 2x \log x + e^x) + (e^x + x^2 \log x)(x \cos x)$$

Hence,

$$\frac{dy}{dx} = (x \sin x + \cos x)(x + 2x \log x + e^x) + (e^x + x^2 \log x)(x \cos x)$$

#### 13. Question

Differentiate the following functions with respect to x:

 $(1 - 2 \tan x)(5 + 4 \sin x)$ 

#### Answer

Let,  $y = (1 - 2 \tan x)(5 + 4 \sin x)$ 

We have to find dy/dx

As we can observe that y is a product of two functions say u and v where,

 $u = (1 - 2\tan x) \text{ and } v = (5 + 4\sin x)$ 

 $\therefore$  y = uv

As we know that to find the derivative of product of two function we apply product rule of differentiation.

**CLICK HERE** 

>>>

🕀 www.studentbro.in

By product rule, we have -

 $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \dots \text{equation } 1$ As,  $u = (1 - 2\tan x)$   $\therefore \frac{du}{dx} = \frac{d}{dx}(1 - 2\tan x)$   $\Rightarrow \frac{du}{dx} = \frac{d}{dx}(1 - 2\tan x)$   $\Rightarrow \frac{du}{dx} = \frac{d}{dx}(1) - 2 \frac{d}{dx}(\tan x) = 0 - 2 \sec^2 x$   $\Rightarrow \frac{du}{dx} = -2 \sec^2 x \dots \text{equation } 2 \{\because \frac{d}{dx}(\tan x) = \sec^2 x\}$ As,  $v = 5 + 4\sin x$   $\therefore \frac{dv}{dx} = \frac{d}{dx}(5 + 4\sin x)$   $\Rightarrow \frac{dv}{dx} = \frac{d}{dx}(5) + 4 \frac{d}{dx}(\sin x) = 0 + 4\cos x$   $\Rightarrow \frac{dv}{dx} = 4\cos x \dots \text{equation } 3 \{\because \frac{d}{dx}(\sin x) = \cos x\}$   $\therefore \text{ from equation } 1, \text{ we can find } dy/dx$   $\therefore \frac{dy}{dx} = (1 - 2\tan x)\frac{dv}{dx} + (5 + 4\sin x)\frac{du}{dx}$ using equation 2 & 3, we get -  $\Rightarrow \frac{dy}{dx} = 4\cos x - 8\tan x \times \cos x - 10\sec^2 x - 8\sin x \times \sec^2 x$   $\because \sin x = \tan x \cos x, \text{ so we get } -$ 

$$\Rightarrow \frac{dy}{dx} = 4 \cos x - 8 \sin x - 10 \sec^2 x - 8 \sec x \tan x$$

Hence,

 $\frac{dy}{dx} = 4\cos x - 8\sin x - 10\sec^2 x - 8\sec x \tan x \dots \text{ ans}$ 

## 14. Question

Differentiate the following functions with respect to x:

 $(x^{2} + 1) \cos x$ 

## Answer

Let,  $y = (x^2 + 1) \cos x$ 

We have to find dy/dx

As we can observe that y is a product of two functions say u and v where,

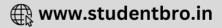
$$u = x^2 + 1$$
 and  $v = \cos x$ 

 $\therefore$  y = uv

As we know that to find the derivative of product of two function we apply product rule of differentiation.

By product rule, we have -

$$\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$$
...equation 1



As, 
$$u = x^2 + 1$$
  

$$\therefore \frac{du}{dx} = \frac{d}{dx}(x^2 + 1) = \frac{d}{dx}(x^2) + \frac{d}{dx}(1)$$

$$\Rightarrow \frac{du}{dx} = 2x \dots \text{equation } 2 \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$$
As,  $v = \cos x$ 

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(\cos x) = -\sin x \dots \text{equation } 3 \{\because \frac{d}{dx}(\cos x) = -\sin x\}$$

 $\therefore$  from equation 1, we can find dy/dx

$$\frac{dy}{dx} = (x^2 + 1)\frac{dv}{dx} + \cos x \frac{du}{dx}$$
$$\Rightarrow \frac{dy}{dx} = (x^2 + 1)(-\sin x) + 2x\cos x \text{ {using equation 2 & 3}}$$

Hence,

 $\frac{dy}{dx} = (x^2 + 1)(-\sin x) + 2x\cos x \dots ans$ 

## 15. Question

Differentiate the following functions with respect to x:

sin<sup>2</sup> x

# Answer

Let,  $y = sin^2 x = sin x sin x$ 

We have to find dy/dx

As we can observe that y is a product of two functions say u and v where,

u = sin x and v = sin x

 $\therefore$  y = uv

As we know that to find the derivative of product of two function we apply product rule of differentiation.

CLICK HERE

≫

By product rule, we have -

$$\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \dots \text{equation 1}$$
As,  $u = \sin x$ 

$$\therefore \frac{du}{dx} = \frac{d}{dx} (\sin x) = \cos x \dots \text{equation 2} \{\because \frac{d}{dx} (\sin x) = \cos x \}$$
As,  $v = \sin x$ 

$$\therefore \frac{dv}{dx} = \frac{d}{dx} (\sin x) = \cos x \dots \text{equation 3} \{\because \frac{d}{dx} (\sin x) = \cos x \}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$\therefore \frac{dy}{dx} = \sin x \frac{dv}{dx} + \sin x \frac{du}{dx}$$

$$\Rightarrow \frac{dy}{dx} = \sin x (\cos x) + \sin x (\cos x) \{\text{using equation 2 \& 3\}}$$

$$\Rightarrow \frac{dy}{dx} = 2 \sin x \cos x$$
Hence,

$$\frac{dy}{dx} = 2 \sin x \cos x = \sin 2x \dots ans$$

# 16. Question

Differentiate the following functions with respect to x:

$$\log_{x^2} x$$

# Answer

Let,  $y = \log_{x^2} x$ 

Using change of base formula for logarithm, we can write y as -

$$y = \frac{\log_e x}{\log_e x^2} = \frac{\log_e x}{2\log_e x} = \frac{1}{2} = \text{constant}$$

We know that  $\frac{d}{dx}$  (constant) = 0

$$\frac{dy}{dx} = 0 \dots ans$$

# 17. Question

Differentiate the following functions with respect to x:

$$e^x \log \sqrt{x} \tan x$$

# Answer

Let,  $y = e^x \log \sqrt{x} \tan x = e^x \log x^{1/2} \tan x = 1/2 e^x \log x \tan x$ 

We have to find dy/dx

As we can observe that y is a product of three functions say u, v & w where,

 $u = \log x$ 

$$v = e^{x}$$

w = tan x

 $\therefore$  y = 1/2 uvw

As we know that to find the derivative of product of three function we apply product rule of differentiation.

By product rule, we have -

$$\frac{dy}{dx} = \frac{1}{2} \left( uw \frac{dv}{dx} + vw \frac{du}{dx} + uv \frac{dw}{dx} \right) \dots \text{equation 1}$$
As,  $u = \log x$ 

$$\therefore \frac{du}{dx} = \frac{d}{dx} (\log x) = \frac{1}{x} \dots \text{equation 2} \{\because \frac{d}{dx} (\log x) = \frac{1}{x} \}$$
As,  $v = e^{x}$ 

$$\therefore \frac{dv}{dx} = \frac{d}{dx} (e^{x}) = e^{x} \log_{e} e = e^{x} \dots \text{equation 3} \{\because \frac{d}{dx} (e^{x}) = e^{x} \}$$
As,  $w = \tan x$ 

$$\therefore \frac{dw}{dx} = \frac{d}{dx} (\tan x) = \sec^{2} x \dots \text{equation 4} \{\because \frac{d}{dx} (\tan x) = \sec^{2} x \}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

Get More Learning Materials Here : 💻

# Regional www.studentbro.in

$$\frac{dy}{dx} = \frac{1}{2} \left( \log x \tan x \frac{dv}{dx} + e^x \tan x \frac{du}{dx} + \log x e^x \frac{dw}{dx} \right)$$

using equation 2, 3 & 4, we have -

$$\Rightarrow \frac{dy}{dx} = \frac{1}{2} (\log x \tan x e^x + e^x \tan x \frac{1}{x} + e^x \log x \sec^2 x)$$

Hence,

 $\frac{dy}{dx} = \frac{1}{2}e^{x}(\log x \tan x + \frac{\tan x}{x} + \log x \sec^{2} x) \dots ans$ 

## 18. Question

Differentiate the following functions with respect to x:

x<sup>3</sup> e<sup>x</sup> cos x

# Answer

Let,  $y = x^3 e^x \cos x$ 

We have to find dy/dx

As we can observe that y is a product of three functions say u, v & w where,

 $u = x^3$ 

 $v = \cos x$ 

 $w = e^{x}$ 

```
∴ y = uvw
```

As we know that to find the derivative of product of three function we apply product rule of differentiation.

By product rule, we have -

$$\frac{dy}{dx} = uw \frac{dv}{dx} + vw \frac{du}{dx} + uv \frac{dw}{dx} \dots equation 1$$
As,  $u = x^3$ 

$$\therefore \frac{du}{dx} = 3x^{3-1} = 3x^2 \dots equation 2 \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$$
As,  $v = \cos x$ 

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(\cos x) = -\sin x \dots equation 3 \{\because \frac{d}{dx}(\cos x) = -\sin x\}$$
As,  $w = e^x$ 

$$\therefore \frac{dw}{dx} = \frac{d}{dx}(e^x) = e^x \dots equation 4 \{\because \frac{d}{dx}(e^x) = e^x\}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$\therefore \frac{dy}{dx} = x^3 e^x \frac{dv}{dx} + \cos x e^x \frac{du}{dx} + x^3 \cos x \frac{dw}{dx}$$
using equation 2, 3 & 4, we have -
$$\Rightarrow \frac{dy}{dx} = x^3 e^x (-\sin x) + e^x \cos x (3x^2) + x^3 \cos x e^x$$
Hence,
$$\frac{dy}{dx} = x^2 e^x (-x \sin x + 3 \cos x + x \cos x) \dots \text{ ans}$$
**19. Question**

Get More Learning Materials Here :

#### 

# Regional www.studentbro.in

Differentiate the following functions with respect to x:

$$\frac{x^2 \cos \frac{\pi}{4}}{\sin x}$$

#### Answer

Let, 
$$y = \frac{x^2 \cos \frac{\pi}{4}}{\sin x} = \frac{x^2}{\sqrt{2} \sin x} = \frac{1}{\sqrt{2}} x^2 \operatorname{cosec} x \{ \because \cos \pi/4 = 1/\sqrt{2} \}$$

We have to find dy/dx

As we can observe that y is a product of two functions say u and v where,

$$u = x^2$$
 and  $v = cosec x$   
 $\therefore y = (1/\sqrt{2}) uv$ 

As we know that to find the derivative of product of two function we apply product rule of differentiation. By product rule, we have –

$$\frac{dy}{dx} = \frac{1}{\sqrt{2}} \left( u \frac{dv}{dx} + v \frac{du}{dx} \right) \dots \text{equation 1}$$
As,  $u = x^2$ 

$$\therefore \frac{du}{dx} = 2x^{2-1} = 2x \dots \text{equation 2} \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$$
As,  $v = \text{cosec } x$ 

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(\text{cosec } x)$$

$$\Rightarrow \frac{dv}{dx} = -\text{cosec } x \text{ cosec } x \text$$

Hence,

 $\frac{dy}{dx} = \frac{1}{\sqrt{2}} \left( -x^2 \operatorname{cosecx} \operatorname{cot} x + 2x \operatorname{cosecx} \right) \dots \operatorname{ans}$ 

# 20. Question

Differentiate the following functions with respect to x:

 $x^4$  (5 sin x – 3 cos x)

#### Answer

Let,  $y = x^4$  (5sin x - 3cos x)

We have to find dy/dx

As we can observe that y is a product of two functions say u and v where,

 $u = x^4$  and v = 5sin x - 3cos x

 $\therefore$  y = uv

As we know that to find the derivative of product of two function we apply product rule of differentiation.

**CLICK HERE** 

>>>

🕀 www.studentbro.in

By product rule, we have -

$$\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \dots \text{equation 1}$$
As,  $u = x^4$ 

$$\therefore \frac{du}{dx} = 4x^{4-1} = 4x^3 \dots \text{equation 2} \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$$
As,  $v = 5\sin x - 3\cos x$ 

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(5\sin x - 3\cos x) = 5\frac{d}{dx}(\sin x) - 3\frac{d}{dx}(\cos x)$$
Using:  $\frac{d}{dx}(\sin x) = \cos x & \frac{d}{dx}(\cos x) = -\sin x$ 

$$\Rightarrow \frac{dv}{dx} = 5\cos x + 3\sin x \dots \text{equation 3}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$\therefore \frac{dy}{dx} = x^4 \frac{dv}{dx} + (5\sin x - 3\cos x)\frac{du}{dx}$$

$$\Rightarrow \frac{dy}{dx} = x^4 (5\cos x + 3\sin x) + 4x^3 (5\sin x - 3\cos x) \{\text{using equation 2 & 3}\}$$
Hence,

 $\frac{dy}{dx} = x^3 (5x \cos x + 3x \sin x + 20 \sin x - 12 \cos x) \dots ans$ 

# 21. Question

Differentiate the following functions with respect to x:

(2x<sup>2</sup> - 3)sin x

## Answer

Let,  $y = (2x^2 - 3) \sin x$ 

We have to find dy/dx

As we can observe that y is a product of two functions say u and v where,

$$u = 2x^2 - 3$$
 and  $v = sin x$ 

As we know that to find the derivative of product of two function we apply product rule of differentiation.

CLICK HERE

≫

R www.studentbro.in

By product rule, we have -

$$\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \dots \text{equation 1}$$
As,  $u = 2x^2 - 3$ 

$$\therefore \frac{du}{dx} = 4x \dots \text{equation 2} \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$$
As,  $v = \sin x$ 

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(\sin x) = \cos x \dots \text{equation 3} \{\because \frac{d}{dx}(\sin x) = \cos x\}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$\therefore \frac{dy}{dx} = (2x^2 - 3)\frac{dv}{dx} + \sin x \frac{du}{dx}$$

$$\Rightarrow \frac{dy}{dx} = (2x^2 - 3)\cos x + 4x\sin x \{\text{using equation } 2 \& 3\}$$

Hence,

 $\frac{\mathrm{d}y}{\mathrm{d}x} = (2x^2 - 3)\cos x + 4x\sin x \dots \text{ ans}$ 

## 22. Question

Differentiate the following functions with respect to x:

x<sup>5</sup> (3 - 6x <sup>- 9</sup>)

#### Answer

Let,  $y = x^5 (3 - 6x^{-9})$ 

We have to find dy/dx

As we can observe that y is a product of two functions say u and v where,

$$u = x^5$$
 and  $v = 3 - 6x^{-9}$ 

As we know that to find the derivative of product of two function we apply product rule of differentiation.

By product rule, we have -

$$\begin{aligned} \frac{dy}{dx} &= u \frac{dv}{dx} + v \frac{du}{dx} \dots \text{equation 1} \\ \text{As, } u &= x^5 \\ \therefore \frac{du}{dx} &= 5x^{5-1} = 5x^4 \dots \text{equation 2} \{\because \frac{d}{dx}(x^n) = nx^{n-1}\} \\ \text{As, } v &= 3 - 6x^{-9} \\ \therefore \frac{dv}{dx} &= \frac{d}{dx}(3 - 6x^{-9}) = 54x^{-10} \dots \text{equation 3} \{\because \frac{d}{dx}(x^n) = nx^{n-1}\} \\ \therefore \text{ from equation 1, we can find dy/dx} \\ \therefore \frac{dy}{dx} &= x^5 \frac{dv}{dx} + (3 - 6x^{-9}) \frac{du}{dx} \\ \Rightarrow \frac{dy}{dx} &= x^5(54x^{-10}) + (3 - 6x^{-9})(5x^4) \text{ {using equation 2 & 3}} \\ \Rightarrow \frac{dy}{dx} &= 54x^{-5} + 15x^4 - 30x^{-5} = 24x^{-5} + 15x^4 \end{aligned}$$

Hence,

 $\frac{dy}{dx} = 24x^{-5} + 15x^4 \dots ans$ 

## 23. Question

Differentiate the following functions with respect to x:

x <sup>- 4</sup> (3 - 4x <sup>- 5</sup>)

## Answer

Let, 
$$y = x^{-4} (3 - 4x^{-5})$$

We have to find dy/dx

As we can observe that y is a product of two functions say u and v where,

Get More Learning Materials Here : 🗾



$$u = x^{-4}$$
 and  $v = 3 - 4x^{-5}$ 

As we know that to find the derivative of product of two function we apply product rule of differentiation.

By product rule, we have -  $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \dots \text{equation 1}$ As,  $u = x^{-4}$   $\therefore \frac{du}{dx} = (-4)x^{-4-1} = -4x^{-5} \dots \text{equation 2} \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$ As,  $v = 3 - 4x^{-5}$  $\therefore \frac{dv}{dx} = \frac{d}{dx}(3 - 4x^{-5}) = 20x^{-6} \dots \text{equation 3} \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$   $\therefore \text{ from equation 1, we can find dy/dx}$   $\therefore \frac{dy}{dx} = x^{-4}\frac{dv}{dx} + (3 - 4x^{-5})\frac{du}{dx}$   $\Rightarrow \frac{dy}{dx} = x^{-4}(20x^{-6}) + (3 - 4x^{-5})(-4x^{-5}) \{\text{using equation 2 & 3}\}$   $\Rightarrow \frac{dy}{dx} = 20x^{-10} + 16x^{-10} - 12x^{-5} = 36x^{-10} - 12x^{-5}$ 

Hence,

 $\frac{dy}{dx} = 36x^{-10} - 12x^{-5} \dots ans$ 

## 24. Question

Differentiate the following functions with respect to x:

 $x^{-3}(5 + 3x)$ 

#### Answer

Let,  $y = x^{-3} (5 + 3x)$ 

We have to find dy/dx

As we can observe that y is a product of two functions say u and v where,

$$u = x^{-3}$$
 and  $v = (5 + 3x)$ 

As we know that to find the derivative of product of two function we apply product rule of differentiation.

CLICK HERE

( >>

By product rule, we have -

$$\begin{array}{l} \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \dots \text{equation 1} \\ \text{As, } u = x^{-3} \\ \therefore \frac{du}{dx} = (-3)x^{-3-1} = -3x^{-4} \dots \text{equation 2} \{ \because \frac{d}{dx}(x^n) = nx^{n-1} \} \\ \text{As, } v = 5 + 3x \\ \therefore \frac{dv}{dx} = \frac{d}{dx}(5 + 3x) = 3 \dots \text{equation 3} \{ \because \frac{d}{dx}(x^n) = nx^{n-1} \} \\ \therefore \text{ from equation 1, we can find dy/dx} \end{array}$$

$$\begin{aligned} &\therefore \frac{dy}{dx} = x^{-3} \frac{dv}{dx} + (5 + 3x) \frac{du}{dx} \\ &\Rightarrow \frac{dy}{dx} = x^{-3}(3) + (5 + 3x)(-3x^{-4}) \text{ {using equation 2 & 3} \\ &\Rightarrow \frac{dy}{dx} = 3x^{-3} - 15x^{-4} - 9x^{-3} = -15x^{-4} - 6x^{-3} \end{aligned}$$

Hence,

 $\frac{dy}{dx} = -x^{-4}(15 + 6x) \dots ans$ 

#### 25. Question

Differentiate the following functions with respect to x:

(ax + b)/(cx + d)

#### Answer

Let, y = (ax + b)/(cx + d)

We have to find dy/dx

As we can observe that y is a product of two functions say u and v where,

u = ax + b and v = cx + d

∴ y = uv

As we know that to find the derivative of product of two function we apply product rule of differentiation.

By product rule, we have -

$$\begin{aligned} \frac{dy}{dx} &= u \frac{dv}{dx} + v \frac{du}{dx} \dots \text{equation 1} \\ \text{As, } u &= ax + b \\ \therefore \frac{du}{dx} &= a + 0 = a \dots \text{equation 2} \{ \because \frac{d}{dx} (x^n) = nx^{n-1} \} \\ \text{As, } v &= \frac{1}{cx + d} \\ \text{As, } \frac{d}{dx} \left(\frac{1}{x}\right) &= -\frac{1}{x^2} \& \frac{d}{dx} (f(ax + b)) = a f'(ax + b) \\ \therefore \frac{dv}{dx} &= \frac{d}{dx} \left(\frac{1}{cx + d}\right) = -\frac{c}{(cx + d)^2} \dots \text{equation 3} \\ \therefore \text{ from equation 1, we can find dy/dx} \\ \therefore \frac{dy}{dx} &= (ax + b) \frac{dv}{dx} + \left(\frac{1}{cx + d}\right) \frac{du}{dx} \\ \Rightarrow \frac{dy}{dx} &= (ax + b) \left(\frac{-c}{(cx + d)^2}\right) + \left(\frac{1}{cx + d}\right) (a) \text{ {using equation 2 & 3}} \end{aligned}$$

$$\Rightarrow \frac{dy}{dx} = \frac{-acx-bc+a(cx+d)}{(cx+d)^2} = \frac{ad-bc}{(cx+d)^2}$$

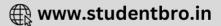
Hence,

 $\frac{dy}{dx} = \frac{ad - bc}{(cx + d)^2} \dots ans$ 

# 26. Question

Differentiate the following functions with respect to x:

 $(ax + b)^n(cx + d)^m$ 



#### Answer

Let,  $y = (ax + b)^{n}(cx + d)^{m}$ 

We have to find dy/dx

As we can observe that y is a product of two functions say u and v where,

$$u = (ax + b)^n$$
 and  $v = (cx + d)^m$ 

∴ y = uv

As we know that to find the derivative of product of two function we apply product rule of differentiation.

By product rule, we have -

$$\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \dots \text{equation 1}$$
As,  $u = (ax + b)^n$ 
As,  $\frac{d}{dx}(x^n) = nx^{n-1} \& \frac{d}{dx}(f(ax + b)) = a f'(ax + b)$ 

$$\therefore \frac{du}{dx} = n(ax + b)^{n-1} \dots \text{equation 2}$$
As,  $v = (cx + d)^m$ 
As,  $\frac{d}{dx}(x^n) = nx^{n-1} \& \frac{d}{dx}(f(ax + b)) = a f'(ax + b)$ 

$$\therefore \frac{dv}{dx} = \frac{d}{dx}\{(cx + d)^m\} = m(cx + d)^{m-1} \dots \text{equation 3}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$\therefore \frac{dy}{dx} = (ax + b)^n \frac{dv}{dx} + (cx + d)^m \frac{du}{dx}$$
{using equation 2 & 3}
$$\Rightarrow \frac{dy}{dx} = (ax + b)^n (m(cx + d)^{m-1}) + (cx + d)^m (n(ax + b)^{n-1})$$

$$\Rightarrow \frac{dy}{dx} = m(ax + b)^{n}(cx + d)^{m-1} + n(cx + d)^{m}(ax + b)^{n-1}$$

Hence,

 $\frac{dy}{dx} = m(ax + b)^{n}(cx + d)^{m-1} + n(cx + d)^{m}(ax + b)^{n-1} \dots ans$ 

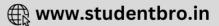
#### 27. Question

Differentiate in two ways, using product rule and otherwise, the function

 $(1 + 2\tan x)(5 + 4\cos x)$ . Verify that the answers are the same.

#### Answer

Let,  $y = (1 + 2 \tan x)(5 + 4 \cos x)$   $\Rightarrow y = 5 + 4 \cos x + 10 \tan x + 8 \tan x \cos x$   $\Rightarrow y = 5 + 4 \cos x + 10 \tan x + 8 \sin x \{ \therefore \tan x \cos x = \sin x \}$ Differentiating y w.r.t x -  $\frac{dy}{dx} = \frac{d}{dx}(5 + 4\cos x + 10\tan x + 8\sin x)$ Using algebra of derivatives, we have -



$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}(5) + 4\frac{\mathrm{d}}{\mathrm{d}x}(\cos x) + 10\frac{\mathrm{d}}{\mathrm{d}x}(\tan x) + 8\frac{\mathrm{d}}{\mathrm{d}x}(\sin x)$$

Use formula of derivative of above function to get the result.

$$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}} = 0 + 4(-\sin x) + 10 \sec^2 x + 8 \cos x$$

 $\frac{dy}{dx} = -4\sin x + 8\cos x + 10\sec^2 x \dots \text{equation 1}$ 

Derivative using product rule -

We have to find dy/dx

As we can observe that y is a product of two functions say u and v where,

u = (1 + 2tan x) and v = (5 + 4cos x)

As we know that to find the derivative of product of two function we apply product rule of differentiation.

By product rule, we have -

$$\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \dots equation 2$$
As,  $u = (1 + 2\tan x)$ 

$$\therefore \frac{du}{dx} = \frac{d}{dx}(1 + 2\tan x)$$

$$\Rightarrow \frac{du}{dx} = \frac{d}{dx}(1) + 2\frac{d}{dx}(\tan x) = 0 + 2\sec^2 x$$

$$\Rightarrow \frac{du}{dx} = 2\sec^2 x \dots equation 3 \{\because \frac{d}{dx}(\tan x) = \sec^2 x\}$$
As,  $v = 5 + 4\cos x$ 

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(5 + 4\cos x)$$

$$\Rightarrow \frac{dv}{dx} = \frac{d}{dx}(5) + 4\frac{d}{dx}(\cos x) = 0 - 4\sin x$$

$$\Rightarrow \frac{dv}{dx} = -4\sin x \dots equation 4 \{\because \frac{d}{dx}(\cos x) = -\sin x\}$$

$$\therefore from equation 2, we can find dy/dx$$

$$\therefore \frac{dy}{dx} = (1 + 2\tan x)\frac{dv}{dx} + (5 + 4\cos x)\frac{du}{dx}$$
using equation 3 & 4, we get -
$$\Rightarrow \frac{dy}{dx} = (1 + 2\tan x)(-4\sin x) + (5 + 4\cos x)(2\sec^2 x)$$

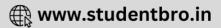
$$\Rightarrow \frac{dy}{dx} = -4\sin x + 8\tan x x \sin x + 10\sec^2 x + 8\cos x x \sec^2 x$$

$$\because \sin x = \tan x \cos x, \text{ so we get -}$$

$$\Rightarrow \frac{dy}{dx} = 4\cos x + 8\frac{\sin^2 x}{\cos x} + 10\sec^2 x - 8\frac{1}{\cos x}$$

$$\Rightarrow \frac{dy}{dx} = 4\cos x + 10\sec^2 x - 8\sec x (1 - \sin^2 x)$$

$$\Rightarrow \frac{dy}{dx} = 4\cos x + 10\sec^2 x - 8\sec x \cos^2 x [\because 1 - \sin^2 x = \cos^2 x]$$



Hence,

 $\frac{dy}{dx} = 4\cos x + 10\sec^2 x - 8\cos x \dots \text{equation 5}$ 

Clearly from equation 1 and 5 we observed that both equations gave identical results.

Hence, Results are verified

#### 28 A. Question

Differentiate each of the following functions by the product by the product rule and the other method and verify that answer from both the methods is the same.

 $(3x^2 + 2)^2$ 

#### Answer

Let,  $y = (3x^2 + 2)^2 = (3x^2 + 2)(3x^2 + 2)$ 

$$\Rightarrow y = 9x^4 + 6x^2 + 6x^2 + 4$$

$$\Rightarrow y = 9x^4 + 12x^2 + 4$$

Differentiating y w.r.t x -

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}(9x^4 + 12x^2 + 4)$$

Using algebra of derivatives, we have -

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}(9x^4) + 12\frac{\mathrm{d}}{\mathrm{d}x}(x^2) + \frac{\mathrm{d}}{\mathrm{d}x}(4)$$

Use formula of derivative of above function to get the result.

$$\Rightarrow \frac{dy}{dx} = 9(4x^{4-1}) + 12(2x^{2-1}) + 0 \{ \because \frac{d}{dx}(x^n) = nx^{n-1} \}$$
$$\therefore \frac{dy}{dx} = 36x^3 + 24x \dots \text{equation } 1$$

Derivative using product rule -

We have to find dy/dx

As we can observe that y is a product of two functions say u and v where,

$$u = (3x^2 + 2)$$
 and  $v = (3x^2 + 2)$ 

As we know that to find the derivative of product of two function we apply product rule of differentiation.

**CLICK HERE** 

>>

🕀 www.studentbro.in

By product rule, we have -

$$\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \dots \text{equation } 2$$
As,  $u = (3x^2 + 2)$ 

$$\therefore \frac{du}{dx} = \frac{d}{dx}(3x^2 + 2)$$

$$\Rightarrow \frac{du}{dx} = \frac{d}{dx}(3x^2) + 2\frac{d}{dx}(1) = 6x$$

$$\Rightarrow \frac{du}{dx} = 6x \dots \text{equation } 3 \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$$
As,  $v = (3x^2 + 2)$ 

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(3x^{2} + 2)$$

$$\Rightarrow \frac{dv}{dx} = \frac{d}{dx}(3x^{2}) + 2\frac{d}{dx}(1) = 6x$$

$$\Rightarrow \frac{dv}{dx} = 6x \dots \text{equation } 4 \{ \because \frac{d}{dx}(x^{n}) = nx^{n-1} \}$$

$$\therefore \text{ from equation } 2, \text{ we can find } dy/dx$$

 $\frac{dy}{dx} = (3x^2 + 2)\frac{dy}{dx} + (3x^2 + 2)\frac{du}{dx}$ 

using equation 3 & 4, we get -

$$\Rightarrow \frac{dy}{dx} = (3x^2 + 2)(6x) + (3x^2 + 2)(6x)$$
$$\Rightarrow \frac{dy}{dx} = 18x^3 + 12x + 18x^3 + 12x = 36x^3 + 24x$$

Hence,

 $\frac{dy}{dx} = 36x^3 + 24x$  .... equation 5

Clearly from equation 1 and 5 we observed that both equations gave identical results.

Hence, Results are verified

#### 28 B. Question

Differentiate each of the following functions by the product by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2)(x + 3)

#### Answer

Let, y = (x + 2)(x + 3)

$$\Rightarrow$$
 y = x<sup>2</sup> + 5x + 6

Differentiating y w.r.t x -

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}(x^2 + 5x + 6)$$

Using algebra of derivatives, we have -

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}(x^2) + 5\frac{\mathrm{d}}{\mathrm{d}x}(x) + \frac{\mathrm{d}}{\mathrm{d}x}(6)$$

Use formula of derivative of above function to get the result.

$$\Rightarrow \frac{dy}{dx} = (2x^{2-1}) + 5(x^{1-1}) + 0 \{ \because \frac{d}{dx}(x^n) = nx^{n-1} \}$$
$$\therefore \frac{dy}{dx} = 2x + 5 \dots \text{equation 1}$$

Derivative using product rule -

We have to find dy/dx

As we can observe that y is a product of two functions say u and v where,

$$u = (x + 2)$$
 and  $v = (x + 3)$ 

∴ y = uv

As we know that to find the derivative of product of two function we apply product rule of differentiation.

**CLICK HERE** 

🕀 www.studentbro.in

By product rule, we have -

 $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \dots \text{equation } 2$ As, u = (x + 2)  $\therefore \frac{du}{dx} = \frac{d}{dx}(x + 2)$   $\Rightarrow \frac{du}{dx} = \frac{d}{dx}(x) + \frac{d}{dx}(2) = 1$   $\Rightarrow \frac{du}{dx} = 1 \dots \text{equation } 3 \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$ As, v = (x + 3)  $\therefore \frac{dv}{dx} = \frac{d}{dx}(x + 3)$   $\Rightarrow \frac{dv}{dx} = \frac{d}{dx}(x) + \frac{d}{dx}(3) = 1$   $\Rightarrow \frac{dv}{dx} = 1 \dots \text{equation } 4 \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$   $\therefore \text{ from equation } 2, \text{ we can find } dy/dx$   $\therefore \frac{dy}{dx} = (x + 2)\frac{dv}{dx} + (x + 3)\frac{du}{dx}$ using equation 3 & 4, we get -

$$\Rightarrow \frac{dy}{dx} = (x + 2)(1) + (x + 3)(1)$$
$$\Rightarrow \frac{dy}{dx} = x + 2 + x + 3 = 2x + 5$$

Hence,

$$\frac{dy}{dx} = 2x + 5$$
 .... equation 5

Clearly from equation 1 and 5 we observed that both equations gave identical results.

Hence, Results are verified

## 28 C. Question

Differentiate each of the following functions by the product by the product rule and the other method and verify that answer from both the methods is the same.

 $(3 \sec x - 4 \csc x) (-2 \sin x + 5 \cos x)$ 

#### Answer

Let,  $y = (3 \sec x - 4 \csc x)(-2 \sin x + 5 \cos x)$ 

 $\Rightarrow$  y = -6 sec x sin x + 15 sec x cos x + 8 sin x cosec x - 20cosec x cos x

 $\Rightarrow y = -6\tan x + 15 + 8 - 20 \cot x \{ \because \tan x \cos x = \sin x \}$ 

 $\Rightarrow$  y = -6 tan x - 20 cot x + 23

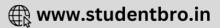
Differentiating y w.r.t x -

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}(-6\tan x - 20\cot x + 23)$$

Using algebra of derivatives, we have -

$$\frac{\mathrm{d}y}{\mathrm{d}x} = (-6)\frac{\mathrm{d}}{\mathrm{d}x}(\tan x) - 20\frac{\mathrm{d}}{\mathrm{d}x}(\cot x) + \frac{\mathrm{d}}{\mathrm{d}x}(23)$$





Use formula of derivative of above function to get the result.

$$\Rightarrow \frac{dy}{dx} = -6 \sec^2 x - 20 (-\csc^2 x) + 0$$
$$\therefore \frac{dy}{dx} = 20 \csc^2 x - 6 \sec^2 x \dots \text{equation } 1$$

Derivative using product rule -

We have to find dy/dx

As we can observe that y is a product of two functions say u and v where,

$$u = (3 \sec x - 4 \csc x)$$
 and  $v = (-2 \sin x + 5 \cos x)$ 

As we know that to find the derivative of product of two function we apply product rule of differentiation.

By product rule, we have -

$$\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \dots equation 2$$
As,  $u = (3 \sec x - 4 \csc x)$ 

$$\therefore \frac{du}{dx} = \frac{d}{dx}(3 \sec x - 4 \csc x)$$
Use the formula:  $\frac{d}{dx}(\sec x) = \sec x \tan x \, \delta \frac{d}{dx}(\csc x) = -\csc x \cot x$ 

$$\Rightarrow \frac{du}{dx} = 3 \frac{d}{dx}(\sec x) - 4 \frac{d}{dx}(\csc x) = 3 \sec x \tan x - (-4 \csc x)$$

$$\Rightarrow \frac{du}{dx} = 3 \sec x \tan x + 4 \csc x \cot x \dots equation 3$$
As,  $v = -2 \sin x + 5 \cos x$ 

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(-2\sin x + 5\cos x)$$

$$\Rightarrow \frac{dv}{dx} = -2 \frac{d}{dx}(\sin x) + 5 \frac{d}{dx}(\cos x) = -2\cos x - 5\sin x$$

$$\Rightarrow \frac{dv}{dx} = -2 \frac{d}{dx}(\sin x) + 5 \frac{d}{dx}(\cos x) = -2\cos x - 5\sin x$$

$$\Rightarrow \frac{dv}{dx} = -2\cos x - 5\sin x \dots equation 4 \{\because \frac{d}{dx}(\cos x) = -\sin x\}$$

$$\therefore \text{ from equation 2, we can find dy/dx}$$

$$\therefore \frac{dy}{dx} = (1 + 2\tan x)\frac{dv}{dx} + (-2\sin x + 5\cos x)\frac{du}{dx}$$
using equation 3 & 4, we get -
$$\Rightarrow \frac{dy}{dx} = (3 \sec x - 4 \csc x)(-2\cos x - 5\sin x) + (-2\sin x + 5\cos x)(3 \sec x \tan x + 4\csc x \cot x)$$

$$\because \sin x = \tan x \cos x, \text{ so we get } -$$

$$\Rightarrow \frac{dy}{dx} = (-15\tan x + 8\cot x + 14) + (-6\tan^2 x - 8\cot x + 15\tan x + 20\cot^2 x)$$

$$\Rightarrow \frac{dy}{dx} = 20 - 6 - 6\tan^2 x + 20\cot^2 x = 20(1 + \cot^2 x) - 6(1 + \tan^2 x)$$

$$\therefore \frac{dy}{dx} = 20 \csc^2 x - 6\sec^2 x [\because 1 + \tan^2 x = \sec^2 x \& 1 + \cot^2 x = \csc^2 x \& x + 1 + \cot^2 x = \csc^2 x$$

Get More Learning Materials Here :

Regional www.studentbro.in

]

CLICK HERE

>>

$$\frac{dy}{dx} = 20 \operatorname{cosec}^2 x - 6 \operatorname{sec}^2 x$$

Hence,

 $\frac{dy}{dx} = 20 \operatorname{cosec}^2 x - 6 \operatorname{sec}^2 x \dots \text{equation 5}$ 

Clearly from equation 1 and 5 we observed that both equations gave identical results.

Hence, Results are verified

# Exercise 30.5

# 1. Question

Differentiate the following functions with respect to x:

 $\frac{x^2+1}{x+1}$ 

# Answer

Let,  $y = \frac{x^2 + 1}{x + 1}$ 

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

$$u = x^2 + 1$$
 and  $v = x + 1$ 

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation.

3}

By quotient rule, we have -

$$\frac{dy}{dx} = \frac{d}{dx} \begin{pmatrix} u \\ v \end{pmatrix} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \dots \text{equation 1}$$
As,  $u = x^2 + 1$ 

$$\therefore \frac{du}{dx} = 2x^{2-1} + 0 = 2x \dots \text{equation 2} \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$$
As,  $v = x + 1$ 

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(x + 1) = 1 \dots \text{equation 3} \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$= v \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v - u \frac{du}{dx}}$$

$$\therefore \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{(x+1)(2x) - (x^2+1)(1)}{(x+1)^2} \text{ {using equation 2 and }}$$

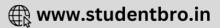
$$\Rightarrow \frac{dy}{dx} = \frac{2x^2 + 2x - x^2 - 1}{(x+1)^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{x^2 + 2x - 1}{(x+1)^2}$$

Hence,

$$\frac{dy}{dx} = \frac{x^2 + 2x - 1}{(x + 1)^2}$$
....ans

2. Question



Differentiate the following functions with respect to x:

 $\frac{2x-1}{x^2+1}$ 

#### Answer

Let,  $y = \frac{2x-1}{x^2+1}$ 

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

u = 2x - 1 and  $v = x^2 + 1$ 

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation.

By quotient rule, we have -

$$\frac{dy}{dx} = \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \dots \text{equation 1}$$
As,  $u = 2x - 1$ 

$$\therefore \frac{du}{dx} = 2x^{1-1} - 0 = 2 \dots \text{equation 2} \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$$
As,  $v = x^2 + 1$ 

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(x^2 + 1) = 2x \dots \text{equation 3} \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$\therefore \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{(x^2 + 1)(2) - (2x - 1)(2x)}{(x^2 + 1)^2} \{\text{using equation 2 and 3}\}$$

$$\Rightarrow \frac{dy}{dx} = \frac{2x^2 + 2 - 4x^2 + 2x}{(x+1)^2}$$
$$\Rightarrow \frac{dy}{dx} = \frac{-2x^2 + 2x + 2}{(x+1)^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{-2x + 2x + 2}{(x+1)^2}$$

Hence,

 $\frac{dy}{dx} = \frac{-2x^2 + 2x + 2}{(x + 1)^2} \dots ans$ 

## 3. Question

Differentiate the following functions with respect to x:

 $\frac{x+\,e^x}{1+\,\log x}$ 

# Answer

Let, 
$$y = \frac{x + e^x}{1 + \log x}$$

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

Get More Learning Materials Here : 📕

CLICK HERE



$$u = x + e^x$$
 and  $v = 1 + \log x$ 

$$\therefore y = u/v$$

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation. By quotient rule, we have –

$$\begin{aligned} \frac{dy}{dx} &= \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \dots \text{equation 1} \\ \text{As, } u &= x + e^x \\ \therefore \frac{du}{dx} &= \frac{d}{dx} (x + e^x) \\ \therefore \frac{du}{dx} &= \frac{d}{dx} (x + e^x) \\ \therefore \frac{d}{dx} (x^n) &= nx^{n-1} \& \frac{d}{dx} (e^x) &= e^x \text{, so we get -} \\ \Rightarrow \frac{du}{dx} &= \frac{d}{dx} (x) + \frac{d}{dx} (e^x) = 1 + e^x \dots \text{equation 2} \\ \text{As, } v &= 1 + \log x \\ \therefore \frac{dv}{dx} &= \frac{d}{dx} (\log x + 1) = \frac{d}{dx} (1) + \frac{d}{dx} (\log x) \\ \Rightarrow \frac{dv}{dx} &= 0 + \frac{1}{x} = \frac{1}{x} \dots \text{equation 3} \left\{ \because \frac{d}{dx} (\log x) = \frac{1}{x} \right\} \\ \therefore \text{ from equation 1, we can find dy/dx} \\ \therefore \frac{dy}{dx} &= \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \\ \Rightarrow \frac{dy}{dx} &= \frac{(1 + \log x)(1 + e^x) - (x + e^x)(\frac{1}{x})}{(\log x + 1)^2} \left\{ \text{using equation 2 and 3} \right\} \\ \end{aligned}$$

$$\stackrel{\Rightarrow}{\to} \frac{dy}{dx} = \frac{1 + e^{x} + \log x + e^{x} \log x - 1 - \frac{e^{x}}{x}}{(\log x + 1)^{2}} = \frac{x \log x (1 + e^{x}) + e^{x} (x - 1)}{x (\log x + 1)^{2}}$$
$$\stackrel{\Rightarrow}{\to} \frac{dy}{dx} = \frac{x \log x (1 + e^{x}) + e^{x} (x - 1)}{x (\log x + 1)^{2}}$$

Hence,

 $\frac{dy}{dx}=\frac{x log \, x(1\,+\,e^x)\,+\,e^x(x-1)}{x(log x\,+\,1)^2}\,\ldots \text{ ans}$ 

# 4. Question

Differentiate the following functions with respect to x:

 $\frac{e^x - \tan x}{\cot x - x^n}$ 

## Answer

Let,  $y = \frac{e^x - tanx}{cotx - x^n}$ 

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

$$u = e^x - tan x and v = cot x - x^n$$

 $\therefore y = u/v$ 

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation.

**CLICK HERE** 

>>

R www.studentbro.in

By quotient rule, we have -

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} \dots \text{equation 1}$$
As,  $u = e^x - \tan x$ 

$$\therefore \frac{du}{dx} = \frac{d}{dx} (e^x - \tan x)$$

$$\therefore \frac{d}{dx} (\tan x) = \sec^2 x \,\& \frac{d}{dx} (e^x) = e^x, \text{ so we get -}$$

$$\Rightarrow \frac{du}{dx} = -\frac{d}{dx} (\tan x) + \frac{d}{dx} (e^x) = \sec^2 x + e^x \dots \text{equation 2}$$
As,  $v = \cot x - x^n$ 

$$\frac{dv}{dx} = \frac{d}{dx} (\cot x - v^n) = \frac{d}{dx} (\cot x) + \frac{d}{dx} (\cot x) = \frac{d}{dx} (\cot x)$$

$$\frac{d}{dx} = \frac{d}{dx}(\cot x - x^{n}) = \frac{d}{dx}(\cot x) - \frac{d}{dx}(x^{n})$$
$$\frac{d}{dx}(\cot x) = -\csc^{2}x \& \frac{d}{dx}(x^{n}) = nx^{n-1}, \text{ so we get } -\frac{dv}{dx} = -\csc^{2}x - nx^{n-1} \dots \text{ equation } 3$$

 $\therefore$  from equation 1, we can find dy/dx

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

using equation 2 and 3, we get -

$$\Rightarrow \frac{dy}{dx} = \frac{(\cot x - x^n)(\sec^2 x + e^x) - (e^x - \tan x)(-\csc^2 x - nx^{n-1})}{(\cot x - x^n)^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{(\cot x - x^n)(\sec^2 x + e^x) + (e^x - \tan x)(+\csc^2 x + nx^{n-1})}{(\cot x - x^n)^2}$$

Hence,

$$\frac{dy}{dx} = \frac{(\cot x - x^n)(\sec^2 x + e^x) + (e^x - \tan x)(+\csc^2 x + nx^{n-1})}{(\cot x - x^n)^2} \dots \text{ ans}$$

## 5. Question

Differentiate the following functions with respect to x:

 $\frac{ax^2 + bx + c}{px^2 + qx + r}$ 

## Answer

Let, 
$$y = \frac{ax^2 + bx + c}{px^2 + qx + r}$$

We have to find dy/dx

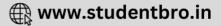
As we can observe that y is a fraction of two functions say u and v where,

$$u = ax^2 + bx + c$$
 and  $v = px^2 + qx + r$ 

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation.

By quotient rule, we have -

$$\frac{dy}{dx} = \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \dots$$
equation 1



As, 
$$u = ax^2 + bx + c$$
  

$$\therefore \frac{du}{dx} = 2ax + b \dots equation 2 \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$$
As,  $v = px^2 + qx + r$   

$$\because \frac{d}{dx}(x^n) = nx^{n-1}, \text{ so we get } -$$

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(px^2 + qx + r) = 2px + q \dots equation 3$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$\therefore \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{(px^2 + qx + r)(2ax + b) - (ax^2 + bx + c)(2px + q)}{(px^2 + qx + r)^2} \{\text{ using equation 2 and 3}\}$$

$$\Rightarrow \frac{dy}{dx} = \frac{2apx^3 + bpx^2 + 2aqx^2 + bqx + 2arx + br - 2apx^3 - aqx^2 - 2bpx^2 - bqx - 2pcx - qc}{(px^2 + qx + r)^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{aqx^2 - bpx^2 + 2arx + br - 2pcx - qc}{(px^2 + qx + r)^2}$$

Hence,

$$\frac{dy}{dx} = \frac{x^2(aq - bp) + 2x(ar - pc) + br - qc}{(px^2 + qx + r)^2} \dots ans$$

#### 6. Question

Differentiate the following functions with respect to x:

 $\frac{x}{1 + \tan x}$ 

## Answer

Let,  $y = \frac{x}{1 + \tan x}$ 

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

u = x and v = 1 + tan x

 $\therefore y = u/v$ 

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation.

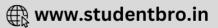
By quotient rule, we have -

$$\frac{dy}{dx} = \frac{d}{dx} \begin{pmatrix} u \\ v \end{pmatrix} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \dots \text{equation 1}$$
As,  $u = x$ 

$$\{ \because \frac{d}{dx} (x^n) = nx^{n-1} \}$$

$$\therefore \frac{du}{dx} = 1 \dots \text{equation 2}$$
As,  $v = 1 + \tan x$ 





$$\frac{d}{dx}(\tan x) = \sec^2 x, \text{ so we get } -$$
$$\frac{dv}{dx} = \frac{d}{dx}(1 + \tan x) = 0 + \sec^2 x = \sec^2 x \dots \text{equation } 3$$

 $\therefore$  from equation 1, we can find dy/dx

Hence,

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{1 + \tan x - x \sec^2 x}{(1 + \tan x)^2} \dots \text{ ans}$$

#### 7. Question

Differentiate the following functions with respect to x:

$$\frac{1}{ax^2 + bx + c}$$

#### Answer

Let,  $y = \frac{1}{ax^2 + bx + c}$ 

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

$$u = 1$$
 and  $v = ax^2 + bx + c$ 

 $\therefore y = u/v$ 

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation.

CLICK HERE

>>

Regional www.studentbro.in

By quotient rule, we have -

$$\frac{dy}{dx} = \frac{d}{dx} \begin{pmatrix} u \\ v \end{pmatrix} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \dots \text{equation 1}$$
As,  $u = 1$ 

$$\therefore \frac{du}{dx} = \mathbf{0} \dots \text{equation 2} \{\because \frac{d}{dx} (\mathbf{x}^n) = n\mathbf{x}^{n-1}\}$$
As,  $v = a\mathbf{x}^2 + b\mathbf{x} + c$ 

$$\because \frac{d}{dx} (\mathbf{x}^n) = n\mathbf{x}^{n-1}, \text{ so we get } -$$

$$\therefore \frac{dv}{dx} = \frac{d}{dx} (a\mathbf{x}^2 + b\mathbf{x} + c) = 2a\mathbf{x} + b \dots \text{equation 3}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$\therefore \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{(a\mathbf{x}^2 + b\mathbf{x} + c)(0) - (1)(2a\mathbf{x} + b)}{(a\mathbf{x}^2 + b\mathbf{x} + c)^2} \text{ {using equation 2 and 3}}$$

 $\Rightarrow \frac{d}{dx} = \frac{d}{(ax^2 + bx + c)^2}$ 

Hence,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{(2\mathrm{a}x + \mathrm{b})}{(\mathrm{a}x^2 + \mathrm{b}x + \mathrm{c})^2} \dots \mathrm{ans}$$

# 8. Question

Differentiate the following functions with respect to x:

$$\frac{e^x}{1+x^2}$$

## Answer

Let, 
$$y = \frac{e^x}{x^2 + 1}$$

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

$$u = e^x$$
 and  $v = x^2 + 1$ 

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation.

**CLICK HERE** 

>>

R www.studentbro.in

By quotient rule, we have -

$$\begin{aligned} \frac{dy}{dx} &= \frac{d}{dx} \begin{pmatrix} u \\ v \end{pmatrix} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \dots \text{equation 1} \\ \\ &\text{As, } u = e^x \\ &\therefore \frac{du}{dx} = \frac{d}{dx} (e^x) = e^x \dots \text{equation 2} \{\because \frac{d}{dx} (e^x) = e^x \} \\ \\ &\text{As, } v = x^2 + 1 \\ &\therefore \frac{dv}{dx} = \frac{d}{dx} (x^2 + 1) = 2x \dots \text{equation 3} \{\because \frac{d}{dx} (x^n) = nx^{n-1} \} \\ &\therefore \text{ from equation 1, we can find dy/dx} \\ &\therefore \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \\ &\Rightarrow \frac{dy}{dx} = \frac{(x^2 + 1)(e^x) - (2x - 1)(e^x)}{(x^2 + 1)^2} \text{ {using equation 2 and 3} } \\ &\Rightarrow \frac{dy}{dx} = \frac{e^x (x^2 + 1 - 2x + 1)}{(x + 1)^2} \\ &\Rightarrow \frac{dy}{dx} = \frac{e^x (x^2 - 2x + 2)}{(x + 1)^2} \\ & \text{Hence,} \end{aligned}$$

 $\frac{dy}{dx} = \frac{e^x(x^2 - 2x + 2)}{(x + 1)^2} \, .... ans$ 

# 9. Question

Differentiate the following functions with respect to x:

 $\frac{e^x + \sin x}{1 + \log x}$ 

## Answer

Let, 
$$y = \frac{e^x + \sin x}{1 + \log x}$$

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

$$u = e^{x} + \sin x$$
 and  $v = 1 + \log x$ 

 $\therefore y = u/v$ 

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation.

By quotient rule, we have -

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \dots \text{equation 1}$$
As,  $u = \sin x + e^x$ 

$$\therefore \frac{du}{dx} = \frac{d}{dx} (\sin x) + e^x$$

$$\therefore \frac{du}{dx} = \frac{d}{dx} (\sin x) = \cos x \,\& \frac{d}{dx} (e^x) = e^x \text{, so we get -}$$

$$\Rightarrow \frac{du}{dx} = \frac{d}{dx} (\sin x) + \frac{d}{dx} (e^x) = \cos x + e^x \dots \text{equation 2}$$
As,  $v = 1 + \log x$ 

$$\therefore \frac{dv}{dx} = \frac{d}{dx} (\log x + 1) = \frac{d}{dx} (1) + \frac{d}{dx} (\log x)$$

$$\Rightarrow \frac{dv}{dx} = 0 + \frac{1}{x} = \frac{1}{x} \dots \text{equation 3} \{\because \frac{d}{dx} (\log x) = \frac{1}{x}\}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$\therefore \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{(1 + \log x)(\cos x + e^x) - (\sin x + e^x)(\frac{1}{x})}{(\log x + 1)^2} \{\text{using equation 2 and 3}\}$$

$$\Rightarrow \frac{dy}{dx} = \frac{x(1 + \log x)(\cos x + e^{x}) - (\sin x + e^{x})}{x(\log x + 1)^{2}}$$

Hence,

$$\frac{dy}{dx} = \frac{x(1 + \log x)(\cos x + e^x) - (\sin x + e^x)}{x(\log x + 1)^2} \dots \text{ ans}$$

## **10. Question**

Differentiate the following functions with respect to x:

xtan x

 $\sec x + \tan x$ 

#### Answer

Let,  $y = \frac{x \tan x}{\sec x + \tan x}$ 

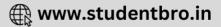
We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

 $u = x \tan x$  and  $v = \sec x + \tan x$ 

 $\therefore y = u/v$ 





As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation. By quotient rule, we have -

$$\frac{dy}{dx} = \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \dots \text{equation 1}$$
  
As,  $u = x \tan x$ 

 $\therefore$  u is the product of two function x and tan x, so we will be applying product rule of differentiation –

$$\stackrel{\cdot}{\rightarrow} \frac{du}{dx} = \frac{d}{dx}(x \tan x)$$

$$\stackrel{\Rightarrow}{\rightarrow} \frac{du}{dx} = x \frac{d}{dx}(\tan x) + \tan x \frac{d}{dx}(x) \text{ [using product rule]}$$

$$\stackrel{\cdot}{\rightarrow} \frac{du}{dx}(\tan x) = \sec^2 x \& \frac{d}{dx}(x^n) = nx^{n-1}, \text{ So we get -}$$

$$\stackrel{\Rightarrow}{\rightarrow} \frac{du}{dx} = x \sec^2 x + \tan x \dots \text{ equation } 2$$

$$\text{As, } v = \sec x + \tan x$$

$$\stackrel{\cdot}{\rightarrow} \frac{d}{dx}(\tan x) = \sec^2 x \& \frac{d}{dx}(\sec x) = \sec x \tan x, \text{ so we get -}$$

$$\stackrel{\cdot}{\rightarrow} \frac{dv}{dx} = \frac{d}{dx}(\sec x + \tan x) = \sec x \tan x + \sec^2 x \dots \text{ equation } 3$$

$$\stackrel{\cdot}{\rightarrow} \text{ from equation } 1, \text{ we can find } dy/dx$$

$$\stackrel{\cdot}{\rightarrow} \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

using equation 2 and 3, we get -

$$\Rightarrow \frac{dy}{dx} = \frac{(\sec x + \tan x)(x \sec^2 x + \tan x) - (x \tan x)(\sec^2 x + \sec x \tan x)}{(\sec x + \tan x)^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{(\sec x + \tan x)(x \sec^2 x + \tan x) - (x \tan x)(\sec x + \tan x) \sec x}{(\sec x + \tan x)^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{(\sec x + \tan x)(x \sec^2 x + \tan x - x \tan x \sec x)}{(\sec x + \tan x)^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{(x \sec^2 x + \tan x - x \tan x \sec x)}{(\sec x + \tan x)}$$

Hence,

 $\frac{dy}{dx} = \frac{(x \sec^2 x + \tan x - x \tan x \sec x)}{(\sec x + \tan x)} \dots \text{ ans}$ 

#### 11. Question

Differentiate the following functions with respect to x:

 $\frac{x \sin x}{1 + \cos x}$ 

#### Answer

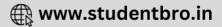
Let,  $y = \frac{x \sin x}{1 + \cos x}$ 

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

 $u = x \sin x$  and  $v = 1 + \cos x$ 





 $\therefore y = u/v$ 

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation. By quotient rule, we have -

$$\frac{dy}{dx} = \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \dots \text{equation 1}$$

As,  $u = x \sin x$ 

: u is the product of two function x and tan x, so we will be applying product rule of differentiation –

 $\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{x\cos x + \sin x + \cos x \sin x + x(\cos^2 x + \sin^2 x)}{(1 + \cos x)^2} = \frac{\cos x(x + \sin x) + (\sin x + x)}{(1 + \cos x)^2}$ 

$$(1 + \cos x)$$

$$\Rightarrow \frac{dy}{dx} = \frac{(\cos x + 1)(x + \sin x)}{(1 + \cos x)^2}$$
$$\Rightarrow \frac{dy}{dx} = \frac{x + \sin x}{(1 + \cos x)}$$

Hence,

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x + \sin x}{(1 + \cos x)} \dots \text{ans}$ 

# 12. Question

Differentiate the following functions with respect to x:

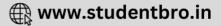
 $2^x \cot x$  $\sqrt{\mathbf{x}}$ 

## Answer

Let,  $y = \frac{2^{x} \cot x}{\sqrt{x}}$ 

We have to find dy/dx





As we can observe that y is a fraction of two functions say u and v where,

u = 2<sup>x</sup> cot x and v =  $\sqrt{x}$ 

$$\therefore y = u/v$$

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation. By quotient rule, we have -

$$\frac{dy}{dx} = \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$
 ... equation 1

As,  $u = 2^x \cot x$ 

: u is the product of two function x and tan x, so we will be applying product rule of differentiation -

**CLICK HERE** 

>>

🕀 www.studentbro.in

$$\therefore \frac{du}{dx} = \frac{d}{dx} (2^{x} \cot x)$$

$$\Rightarrow \frac{du}{dx} = 2^{x} \frac{d}{dx} (\cot x) + \cot x \frac{d}{dx} (2^{x}) [\text{using product rule}]$$

$$\therefore \frac{d}{dx} (\cot x) = -\csc^{2} x \& \frac{d}{dx} (a^{x}) = a^{x} \log_{e} a, \text{ So we get } -$$

$$\Rightarrow \frac{du}{dx} = 2^{x} (-\csc^{2} x) + \cot x (2^{x} \log_{e} 2) \dots \text{equation } 2$$

$$\text{As, } v = \sqrt{x}$$

$$\therefore \frac{d}{dx} (x^{n}) = nx^{n-1}, \text{ so we get } -$$

$$\therefore \frac{dv}{dx} = \frac{d}{dx} (x^{\frac{1}{2}}) = \frac{1}{2} x^{\frac{1}{2}-1} = \frac{1}{2\sqrt{x}} \dots \text{equation } 3$$

 $\therefore$  from equation 1, we can find dy/dx

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

using equation 2 and 3, we get -

$$\Rightarrow \frac{dy}{dx} = \frac{(\sqrt{x})(-2^{x} \csc^{2} x + 2^{x} \cot x \log 2) - (2^{x} \cot x)(\frac{x}{2\sqrt{x}})}{(\sqrt{x})^{2}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{(x)(-2^{x} \csc^{2} x + 2^{x} \cot x \log 2) - (2^{x} \cot x)}{2x\sqrt{x}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{(2^{x})(-x \csc^{2} x + x \cot x \log 2 - \cot x)}{2x\sqrt{x}}$$

Hence,

$$\frac{dy}{dx} = \frac{(2^x)(-x \csc^2 x + x \cot x \log 2 - \cot x)}{2x\sqrt{x}} \dots \text{ ans}$$

#### 13. Question

Differentiate the following functions with respect to x:

 $\frac{\sin x - x \cos x}{x \sin x + \cos x}$ 

#### Answer

Let,  $y = \frac{\sin x - x \cos x}{x \sin x + \cos x}$ 

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

 $u = \sin x - x \cos x$  and  $v = x \sin x + \cos x$ 

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation. By quotient rule, we have –

$$\frac{dy}{dx} = \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$
 ... equation 1

 $u = - (x \cos x - \sin x)$ 

$$\therefore \frac{\mathrm{d}u}{\mathrm{d}x} = -\frac{\mathrm{d}}{\mathrm{d}x}(x\cos x - \sin x)$$

Using algebra of derivatives -

$$\Rightarrow \frac{du}{dx} = -\frac{d}{dx}(x\cos x) + \frac{d}{dx}(\sin x)$$
  
$$\because \frac{d}{dx}(\sin x) = \cos x \& \frac{d}{dx}(\cos x) = -\sin x$$
  
$$\because \frac{du}{dx} = -x\frac{d}{dx}(\cos x) - \cos x \frac{d}{dx}(x) + \frac{d}{dx}(\sin x) \text{ {using product rule}}$$
  
$$\Rightarrow \frac{du}{dx} = x\sin x - \cos x + \cos x = x\sin x \dots \text{equation } 2$$

As,  $v = x \sin x + \cos x$ 

$$\frac{dv}{dx} = \frac{d}{dx}(x\sin x + \cos x)$$

Using algebra of derivatives -

$$\Rightarrow \frac{dv}{dx} = \frac{d}{dx}(x\sin x) + \frac{d}{dx}(\cos x)$$
  
$$\because \frac{d}{dx}(\sin x) = \cos x \& \frac{d}{dx}(\cos x) = -\sin x$$
  
$$\because \frac{dv}{dx} = x \frac{d}{dx}(\sin x) + \sin x \frac{d}{dx}(x) + \frac{d}{dx}(\cos x) \text{ {using product rule}}$$
  
$$\Rightarrow \frac{dv}{dx} = x\cos x + \sin x - \sin x = x\cos x \dots \text{equation 3}$$

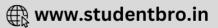
 $\therefore$  from equation 1, we can find dy/dx

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

using equation 2 and 3, we get -

$$\Rightarrow \frac{dy}{dx} = \frac{(x\sin x + \cos x)(x\sin x) - (\sin x - x\cos x)(x\cos x)}{(x\sin x + \cos x)^2}$$
$$\Rightarrow \frac{dy}{dx} = \frac{x^2 \sin^2 x + x\sin x \cos x - x\sin x \cos x + x^2 \cos^2 x}{(x\sin x + \cos x)^2}$$
$$\Rightarrow \frac{dy}{dx} = \frac{x^2 (\sin^2 x + \cos^2 x)}{(x\sin x + \cos x)^2} = \frac{x^2}{(x\sin x + \cos x)^2}$$
Hence,
$$\frac{dy}{dx} = \frac{x^2}{(x\sin x + \cos x)^2} \dots \text{ans}$$

14. Question



Differentiate the following functions with respect to x:

$$\frac{x^2 - x + 1}{x^2 + x + 1}$$

#### Answer

Let, 
$$y = \frac{x^2 - x + 1}{x^2 + x + 1}$$

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

$$u = x^2 - x + 1$$
 and  $v = x^2 + x + 1$   
∴  $y = u/v$ 

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation. By quotient rule, we have -

$$\begin{aligned} \frac{dy}{dx} &= \frac{d}{dx} \begin{pmatrix} u \\ v \end{pmatrix} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \dots \text{equation 1} \\ \\ \text{As, } u &= x^2 - x + 1 \\ &\because \frac{du}{dx} = 2x^{2-1} - 1 + 0 = 2x - 1 \dots \text{equation 2} \{\because \frac{d}{dx}(x^n) = nx^{n-1}\} \\ \\ \text{As, } v &= x^2 + x + 1 \\ &\therefore \frac{dv}{dx} = \frac{d}{dx}(x^2 + x + 1) = 2x + 1 \dots \text{equation 3} \{\because \frac{d}{dx}(x^n) = nx^{n-1}\} \\ &\therefore \text{ from equation 1, we can find dy/dx} \\ &\because \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \\ \\ &\Rightarrow \frac{dy}{dx} = \frac{(x^2 + x + 1)(2x - 1) - (x^2 - x + 1)(2x + 1)}{(x^2 + x + 1)^2} \text{ {using equation 2 and 3} } \end{aligned}$$

$$\Rightarrow \frac{dy}{dx} = \frac{2x^3 + 2x^2 + 2x - x^2 - x - 1 - 2x^3 + 2x^2 - 2x - x^2 + x - 1}{(x^2 + x + 1)^2}$$
$$\Rightarrow \frac{dy}{dx} = \frac{2x^2 - 2}{(x^2 + x + 1)^2}$$

$$\Rightarrow \frac{dx}{dx} = \frac{dx}{dx^2 + x + x^2}$$

Hence,

 $\frac{dy}{dx} = \frac{2x^2 - 2}{(x^2 + x + 1)^2} \dots \text{ ans}$ 

## 15. Question

Differentiate the following functions with respect to x:

$$\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}$$

Answer

Let, 
$$y = \frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}$$

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

Get More Learning Materials Here :

**CLICK HERE** >>



$$u = \sqrt{a} + \sqrt{x}$$
 and  $v = \sqrt{a} - \sqrt{x}$ 

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation. By quotient rule, we have –

$$\begin{split} \frac{dy}{dx} &= \frac{d}{dx} \begin{pmatrix} u \\ v \end{pmatrix} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \dots \text{equation 1} \\ \text{As, } u &= \sqrt{a} + \sqrt{x} \\ \because \frac{d}{dx} (x^n) &= nx^{n-1} \text{ , so we get } - \\ \therefore \frac{du}{dx} &= \frac{d}{dx} \left( \sqrt{a} + x^{\frac{1}{2}} \right) = 0 + \frac{1}{2} x^{\frac{1}{2}-1} = \frac{1}{2\sqrt{s}} \dots \text{equation 2} \\ \text{As, } v &= \sqrt{a} - \sqrt{x} \\ \because \frac{d}{dx} (x^n) &= nx^{n-1} \text{ , so we get } - \\ \therefore \frac{dv}{dx} &= \frac{d}{dx} \left( \sqrt{a} - x^{\frac{1}{2}} \right) = 0 - \frac{1}{2} x^{\frac{1}{2}-1} = -\frac{1}{2\sqrt{s}} \dots \text{equation 3} \end{split}$$

 $\therefore$  from equation 1, we can find dy/dx

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

using equation 2 and 3, we get -

$$\Rightarrow \frac{dy}{dx} = \frac{\left(\sqrt{a} - \sqrt{x}\right)\left(\frac{1}{2\sqrt{x}}\right) - \left(\sqrt{a} + \sqrt{x}\right)\left(-\frac{1}{2\sqrt{x}}\right)}{(\sqrt{a} - \sqrt{x})^2}$$
$$\Rightarrow \frac{dy}{dx} = \frac{\frac{1}{2\sqrt{x}}\left[\left(\sqrt{a} - \sqrt{x}\right) + \left(\sqrt{a} + \sqrt{x}\right)\right]}{(\sqrt{a} - \sqrt{x})^2}$$
$$\Rightarrow \frac{dy}{dx} = \frac{\frac{1}{2\sqrt{x}}\left[2\sqrt{a}\right]}{(\sqrt{a} - \sqrt{x})^2} = \frac{\sqrt{a}}{\sqrt{x}(\sqrt{a} - \sqrt{x})^2}$$

Hence,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{a}}{\sqrt{x}(\sqrt{a} - \sqrt{x})^2} \dots \text{ans}$$

# 16. Question

Differentiate the following functions with respect to x:

 $\frac{a + \sin x}{1 + a \sin x}$ 

#### Answer

Let,  $y = \frac{a + \sin x}{1 + a \sin x}$ 

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

u = a + sin x and v = 1 + a sin x

 $\therefore y = u/v$ 

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation.

By quotient rule, we have -





$$\frac{dy}{dx} = \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \dots \text{equation 1}$$
As,  $u = a + \sin x$ 

$$\therefore \frac{d}{dx} (\sin x) = \cos x \text{, so we get -}$$

$$\therefore \frac{du}{dx} = \frac{d}{dx} (a + \sin x) = 0 + \cos x = \cos x \dots \text{equation 2}$$
As,  $v = 1 + a \sin x$ 

$$\therefore \frac{d}{dx} (\sin x) = \cos x \text{, so we get -}$$

$$\therefore \frac{dv}{dx} = \frac{d}{dx} (1 + a \sin x) = 0 + a \cos x = a \cos x \dots \text{equation 3}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

using equation 2 and 3, we get -

$$\Rightarrow \frac{dy}{dx} = \frac{(1 + a\sin x)(\cos x) - (a + \sin x)(a \cos x)}{(1 + a\sin x)^2}$$
$$\Rightarrow \frac{dy}{dx} = \frac{\cos x + a\sin x \cos x - a^2 \cos x - a \sin x \cos x}{(1 + a\sin x)^2}$$
$$\Rightarrow \frac{dy}{dx} = \frac{\cos x - a^2 \cos x}{(1 + a\sin x)^2}$$
$$\Rightarrow \frac{dy}{dx} = \frac{\cos x (1 - a^2)}{(1 + a\sin x)^2}$$

Hence,

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\cos x \, (1 - a^2)}{(1 + a \sin x)^2} \dots \text{ans}$$

# 17. Question

Differentiate the following functions with respect to x:

 $\frac{10^{x}}{\sin x}$ 

#### Answer

Let,  $y = \frac{10^{x}}{\sin x}$ 

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

 $u = 10^{x}$  and v = sin x

 $\therefore y = u/v$ 

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation.

By quotient rule, we have -

$$\frac{dy}{dx} = \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \dots$$
equation 1

As,  $u = 10^{x}$ 





$$\begin{array}{l} \stackrel{\cdot\cdot}{\overset{d}{dx}}\left(a^{x}\right) \ = \ a^{x}\log a \ , \ \text{so we get} \ - \\ \stackrel{\cdot\cdot}{\overset{du}{dx}} \ = \ \frac{d}{dx}(10^{x}) \ = \ 10^{x}\log_{e}10 \ \dots \text{equation} \ 2 \\ \text{As, } v \ = \ \sin x \\ \stackrel{\cdot\cdot}{\overset{d}{dx}}\left(\sin x\right) \ = \ \cos x \ , \ \text{so we get} \ - \end{array}$$

 $\frac{dv}{dx} = \frac{d}{dx}(\sin x) = \cos x \dots \text{equation 3}$ 

 $\therefore$  from equation 1, we can find dy/dx

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

using equation 2 and 3, we get -

$$\Rightarrow \frac{dy}{dx} = \frac{\sin x (10^{X} \log 10) - (10^{X}) (\cos x)}{\sin^{2} x}$$
$$\Rightarrow \frac{dy}{dx} = \frac{10^{X} (\log 10 \sin x - \cos x)}{\sin^{2} x}$$

Hence,

 $\frac{dy}{dx} = \frac{10^x \left(\log 10 \ \sin x \ - \cos x\right)}{\sin^2 x} \ .... ans$ 

# 18. Question

Differentiate the following functions with respect to x:

 $\frac{1+3^x}{1-3^x}$ 

## Answer

Let,  $y = \frac{1+3^{X}}{1-3^{X}}$ 

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

$$u = 1 + 3^{x}$$
 and  $v = 1 - 3^{x}$ 

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation.

CLICK HERE

>>>

R www.studentbro.in

By quotient rule, we have -

$$\begin{array}{l} \frac{dy}{dx} = \frac{d}{dx} \begin{pmatrix} u \\ v \end{pmatrix} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \dots \text{equation 1} \\\\ \text{As, } u = 1 + 3^{x} \\\\ \hline \frac{d}{dx} (a^x) = a^x \log a \text{, so we get -} \\\\ \frac{du}{dx} = \frac{d}{dx} (1 + 3^x) = 3^x \log_e 3 \dots \text{equation 2} \\\\ \text{As, } v = 1 - 3^x \\\\ \hline \frac{d}{dx} (a^x) = a^x \log a \text{, so we get -} \end{array}$$

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(1 - 3^{x}) = -3^{x}\log_{e} 3 \dots \text{equation } 3$$

 $\therefore$  from equation 1, we can find dy/dx

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

using equation 2 and 3, we get -

$$\Rightarrow \frac{dy}{dx} = \frac{(1-3^{X})(3^{X}\log 3) - (1+3^{X})(-3^{X}\log 3)}{(1-3^{X})^{2}}$$
$$\Rightarrow \frac{dy}{dx} = \frac{3^{X}\log 3(1-3^{X}+1+3^{X})}{(1-3^{X})^{2}}$$
$$\Rightarrow \frac{dy}{dx} = \frac{2 \times 3^{X}\log 3}{(1-3^{X})^{2}}$$

Hence,

 $\frac{dy}{dx} = \frac{2 \times 3^x \text{log } 3}{(1 - 3^x)^2} \dots \text{ans}$ 

#### **19. Question**

Differentiate the following functions with respect to x:

$$\frac{3^{x}}{x + \tan x}$$

#### Answer

Let,  $y = \frac{3^{X}}{x + \tan x}$ 

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

 $u = 3^x$  and v = x + tan x

 $\therefore y = u/v$ 

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation.

By quotient rule, we have -

$$\frac{dy}{dx} = \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \dots \text{equation 1}$$
As,  $u = 3^x$ 

$$\therefore \frac{d}{dx} (a^x) = a^x \log a \text{, so we get -}$$

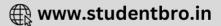
$$\therefore \frac{du}{dx} = \frac{d}{dx} (3^x) = 3^x \log_e 3 \dots \text{equation 2}$$
As,  $v = x + \tan x$ 

$$\therefore \frac{d}{dx} (\tan x) = \sec^2 x \text{, so we get -}$$

$$\therefore \frac{dv}{dx} = \frac{d}{dx} (x + \tan x) = 1 + \sec^2 x \dots \text{equation 3}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$\therefore \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$



using equation 2 and 3, we get -

$$\Rightarrow \frac{dy}{dx} = \frac{(x + \tan x)(3^{x}\log 3) - (3^{x})(1 + \sec^{2} x)}{(x + \tan x)^{2}}$$
$$\Rightarrow \frac{dy}{dx} = \frac{3^{x}(x\log 3 + \tan x\log 3 - \sec^{2} x - 1)}{(x + \tan x)^{2}}$$

Hence,

 $\frac{dy}{dx} = \frac{3^x \left(x \log 3 + \tan x \log 3 - \sec^2 x - 1\right)}{(x + \tan x)^2} \dots \text{ ans}$ 

## 20. Question

Differentiate the following functions with respect to x:

 $\frac{1+\log x}{1\!-\!\log x}$ 

#### Answer

Let,  $y = \frac{1 + \log x}{1 - \log x}$ 

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

$$u = 1 + \log x$$
 and  $v = 1 - \log x$ 

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation.

By quotient rule, we have -

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} \dots \text{equation 1}$$
As,  $u = 1 + \log x$ 

$$\therefore \frac{d}{dx} (\log x) = \frac{1}{x}, \text{ so we get } -$$

$$\therefore \frac{du}{dx} = \frac{d}{dx} (1 + \log x) = 0 + \frac{1}{x} = \frac{1}{x} \dots \text{equation 2}$$
As,  $v = 1 - \log x$ 

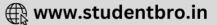
$$\therefore \frac{d}{dx} (\log x) = \frac{1}{x}, \text{ so we get } -$$

$$\therefore \frac{dv}{dx} = \frac{d}{dx} (1 - \log x) = -\frac{1}{x} \dots \text{equation 3}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$\therefore \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$
using equation 2 and 3, we get -
$$\Rightarrow \frac{dy}{dx} = \frac{(1 - \log x)(\frac{1}{x}) - (1 + \log x)(-\frac{1}{x})}{(1 - \log x)^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{\frac{1}{x}(1 - \log x + 1 + \log x)}{(1 - \log x)^2}$$
$$\Rightarrow \frac{dy}{dx} = \frac{2}{x(1 - \log x)^2}$$



Hence,

 $\frac{dy}{dx} = \frac{2}{x(1 - \log x)^2} \dots \text{ans}$ 

# 21. Question

Differentiate the following functions with respect to x:

 $\frac{4x + 5\sin x}{3x + 7\cos x}$ 

#### Answer

Let,  $y = \frac{4x + 5\sin x}{3x + 7\cos x}$ 

We have to find dy/dx

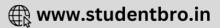
As we can observe that y is a fraction of two functions say u and v where,

$$u = 4x + 5sin x and v = 3x + 7cos x$$

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation.

By quotient rule, we have -

 $\frac{dy}{dx} = \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$  ... equation 1 As,  $u = 4x + 5 \sin x$  $\frac{d}{dx}(\sin x) = \cos x$ , so we get - $\frac{du}{dx} = \frac{d}{dx}(4x + 5\sin x) = 4 + 5\cos x \dots \text{equation } 2$ As,  $v = 3x + 7 \cos x$  $\frac{d}{dx}(\cos x) = -\sin x$ , so we get - $\frac{dv}{dx} = \frac{d}{dx}(3x + 7\cos x) = 3 - 7\sin x \dots \text{equation } 3$  $\therefore$  from equation 1, we can find dy/dx  $\frac{dy}{dy} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$ using equation 2 and 3, we get - $\Rightarrow \frac{dy}{dx} = \frac{(3x + 7\cos x)(4 + 5\cos x) - (4x + 5\sin x)(3 - 7\sin x)}{(3x + 7\cos x)^2}$  $\Rightarrow \frac{dy}{dx} = \frac{12x + 15 x \cos x + 28 \cos x + 35 \cos^2 x - 12x + 28 x \sin x - 15 \sin x + 35 \sin^2 x}{(3x + 7 \cos x)^2}$  $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{15\,\mathrm{x}\mathrm{cosx} + 28\,\mathrm{cosx} + 35\,\mathrm{cos}^2\,\mathrm{x} + 35\,\mathrm{sin}^2\,\mathrm{x} + 28\,\mathrm{x}\mathrm{sin}\,\mathrm{x} - 15\,\mathrm{sin}\,\mathrm{x}}{(3\mathrm{x} + 7\,\mathrm{cosx})^2}$  $\Rightarrow \frac{dy}{dx} = \frac{15 x \cos x + 28 \cos x + 35 + 28 x \sin x - 15 \sin x}{(3x + 7 \cos x)^2}$ Hence,  $\frac{dy}{dx} = \frac{15 x \cos x + 28 \cos x + 28 x \sin x - 15 \sin x + 35}{(3x + 7 \cos x)^2} \dots \text{ ans}$ 



## 22. Question

Differentiate the following functions with respect to x:

$$\frac{x}{1 + \tan x}$$

#### Answer

Let, 
$$y = \frac{x}{1 + \tan x}$$

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

$$u = x$$
 and  $v = 1 + tan x$ 

$$\therefore y = u/v$$

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation.

3

By quotient rule, we have -

$$\frac{dy}{dx} = \frac{d}{dx} \begin{pmatrix} u \\ v \end{pmatrix} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \dots \text{equation 1}$$
As,  $u = x$ 

$$\therefore \frac{du}{dx} = 1 \dots \text{equation 2} \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$$
As,  $v = 1 + \tan x$ 

$$\because \frac{d}{dx}(\tan x) = \sec^2 x, \text{ so we get -}$$

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(1 + \tan x) = 0 + \sec^2 x = \sec^2 x \dots \text{equation}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$\therefore \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{(1 + \tan x)(1) - (x)(\sec^2 x)}{(1 + \tan x)^2} \text{ {using equation 2 and 3}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{1 + \tan x - x \sec^2 x}{(1 + \tan x)^2}$$

Hence,

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 + \tan x - x \sec^2 x}{(1 + \tan x)^2} \dots \text{ ans}$ 

# 23. Question

Differentiate the following functions with respect to x:

 $\frac{a + b \sin x}{c + d \cos x}$ 

## Answer

Let,  $y = \frac{a + b \sin x}{c + d \cos x}$ 

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

Get More Learning Materials Here : 📕

CLICK HERE



u = a + bsin x and v = c + d cos x

$$\therefore y = u/v$$

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation. By quotient rule, we have –

$$\frac{dy}{dx} = \frac{d}{dx} \begin{pmatrix} u \\ v \end{pmatrix} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \dots \text{equation 1}$$
As,  $u = a + b \sin x$ 

$$\therefore \frac{d}{dx} (\sin x) = \cos x \text{, so we get -}$$

$$\therefore \frac{du}{dx} = \frac{d}{dx} (a + b \sin x) = 0 + b \cos x = b \cos x \dots \text{equation 2}$$
As,  $v = c + d \cos x$ 

$$\therefore \frac{d}{dx} (\cos x) = -\sin x \text{, so we get -}$$

$$\therefore \frac{dv}{dx} = \frac{d}{dx} (c + d \cos x) = 0 - d \sin x = -d \sin x \dots \text{equation 3}$$

 $\therefore$  from equation 1, we can find dy/dx

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

using equation 2 and 3, we get -

$$\Rightarrow \frac{dy}{dx} = \frac{(c + d\cos x)(b\cos x) - (a + b\sin x)(-d\sin x)}{(c + d\cos x)^2}$$
$$\Rightarrow \frac{dy}{dx} = \frac{(bc\cos x + bd\cos^2 x + ad\sin x + bd\sin^2 x)}{(c + d\cos x)^2}$$

$$\therefore \sin^2 x + \cos^2 x = 1$$
, so we get

$$\Rightarrow \frac{dy}{dx} = \frac{(bc\cos x + ad\sin x + bd(\cos^2 x + \sin^2 x))}{(c + d\cos x)^2} = \frac{bc\cos x + ad\sin x + bd}{(c + d\cos x)^2}$$
$$\Rightarrow \frac{dy}{dx} = \frac{bc\cos x + ad\sin x + bd}{(c + d\cos x)^2}$$

Hence,

 $\frac{dy}{dx} = \frac{bc \cos x + ad \sin x + bd}{(c + d \cos x)^2} \dots ans$ 

### 24. Question

Differentiate the following functions with respect to x:

$$\frac{\mathbf{px}^2 + \mathbf{qx} + \mathbf{r}}{\mathbf{ax} + \mathbf{b}}$$

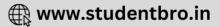
### Answer

Let,  $y = \frac{px^2 + qx + r}{ax + b}$ 

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

$$u = px^2 + qx + r \text{ and } v = ax + b$$
  
 $\therefore y = u/v$ 



As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation.

By quotient rule, we have -

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \dots \text{equation 1}$$
As,  $u = px^2 + qx + r$ 

$$\therefore \frac{du}{dx} = 2px + q \dots \text{equation 2} \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$$
As,  $v = ax + b$ 

$$\because \frac{d}{dx}(x^n) = nx^{n-1}, \text{ so we get } -$$

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(ax + b) = a \dots \text{equation 3}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$\therefore \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{(ax + b)(2px + q) - (px^2 + qx + r)(a)}{(ax + b)^2} \text{ {using equation 2 and 3}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{2apx^2 + aqx + 2bpx + bq - apx^2 - aqx - ar}{(ax + b)^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{apx^2 + 2bpx + bq - ar}{(ax + b)^2}$$
Hence,

 $\frac{dy}{dx} = \frac{apx^2 + 2bpx + bq - ar}{(ax + b)^2} \dots ans$ 

# 25. Question

Differentiate the following functions with respect to x:

 $\frac{x^n}{ain}$ 

sin x

# Answer

Let, 
$$y = \frac{x^n}{\sin x}$$

We have to find dy/dx

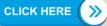
As we can observe that y is a fraction of two functions say u and v where,

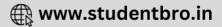
 $u = x^n$  and v = sin x

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation.

By quotient rule, we have -

$$\begin{array}{l} \frac{dy}{dx} = \frac{d}{dx} \begin{pmatrix} u \\ v \end{pmatrix} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \dots \text{equation 1} \\\\ \text{As, } u = x^n \\\\ \hline \frac{d}{dx} (x^n) = n x^{n-1} \text{, so we get -} \end{array}$$





$$\frac{du}{dx} = \frac{d}{dx}(x^{n}) = nx^{n-1} \dots \text{equation } 2$$
As, v = sin x
$$\frac{d}{dx}(\sin x) = \cos x \text{, so we get } -$$

$$\frac{dv}{dx} = \frac{d}{dx}(\sin x) = \cos x \dots \text{equation } 3$$

 $\therefore$  from equation 1, we can find dy/dx

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

using equation 2 and 3, we get -

$$\Rightarrow \frac{dy}{dx} = \frac{\sin x (nx^{n-1}) - (x^n)(\cos x)}{\sin^2 x}$$

Hence,

 $\frac{dy}{dx} = \frac{\sin x \left(nx^{n-1}\right) - (x^n)(\cos x)}{\sin^2 x} \dots \text{ ans}$ 

### 26. Question

Differentiate the following functions with respect to x:

$$\frac{x^5 - \cos x}{\sin x}$$

#### Answer

Let, 
$$y = \frac{x^5 - \cos x}{\sin x}$$

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

$$u = x^5 - \cos x$$
 and  $v = \sin x$ 

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation.

By quotient rule, we have -

$$\frac{dy}{dx} = \frac{d}{dx} \begin{pmatrix} u \\ v \end{pmatrix} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \dots \text{equation 1}$$
As,  $u = x^5 - \cos x$ 

$$\therefore \frac{d}{dx} (x^n) = nx^{n-1} \& \frac{d}{dx} (\cos x) = -\sin x, \text{ so we get } v$$

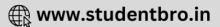
$$\therefore \frac{du}{dx} = \frac{d}{dx} (x^5 - \cos x) = 5x^4 + \sin x \dots \text{equation 2}$$
As,  $v = \sin x$ 

$$\therefore \frac{d}{dx} (\sin x) = \cos x, \text{ so we get } -$$

$$\therefore \frac{dv}{dx} = \frac{d}{dx} (\sin x) = \cos x \dots \text{equation 3}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$\therefore \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$



using equation 2 and 3, we get -

$$\Rightarrow \frac{dy}{dx} = \frac{\sin x (5x^4 + \sin x) - (x^5 - \cos x)(\cos x)}{\sin^2 x}$$
$$\Rightarrow \frac{dy}{dx} = \frac{5x^4 \sin x - x^5 \cos x + (\sin^2 x + \cos^2 x)}{\sin^2 x}$$

 $\therefore \sin^2 x + \cos^2 x = 1$ , so we get -

$$\Rightarrow \frac{dy}{dx} = \frac{5x^4 \sin x - x^5 \cos x + 1}{\sin^2 x}$$

Hence,

 $\frac{dy}{dx} = \frac{x^4(5\sin x - x\cos x) + 1}{\sin^2 x} \dots \text{ans}$ 

#### 27. Question

Differentiate the following functions with respect to x:

 $x + \cos x$ 

tan x

### Answer

Let,  $y = \frac{x + \cos x}{\tan x}$ 

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

 $u = x + \cos x$  and  $v = \tan x$ 

 $\therefore y = u/v$ 

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation.

By quotient rule, we have -

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} \dots \text{equation 1}$$
As,  $u = x + \cos x$ 

$$\therefore \frac{d}{dx} (x^n) = nx^{n-1} \& \frac{d}{dx} (\cos x) = -\sin x, \text{ so we get -}$$

$$\therefore \frac{du}{dx} = \frac{d}{dx} (x + \cos x) = 1 - \sin x \dots \text{equation 2}$$
As,  $v = \tan x$ 

$$\therefore \frac{d}{dx} (\tan x) = \sec^2 x, \text{ so we get -}$$

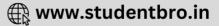
$$\therefore \frac{dv}{dx} = \frac{d}{dx} (\tan x) = \sec^2 x \dots \text{equation 3}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$\therefore \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

using equation 2 and 3, we get -

$$\Rightarrow \frac{dy}{dx} = \frac{(\tan x)(1-\sin x)-(x+\cos x)(\sec^2 x)}{\tan^2 x}$$
$$\Rightarrow \frac{dy}{dx} = \frac{\tan x - \sin x \tan x - x \sec^2 x - x \sec x}{\sin^2 x}$$



Hence,

$$\frac{dy}{dx} = \frac{\tan x - \sin x \tan x - x \sec^2 x - x \sec x}{\sin^2 x} \dots \text{ ans}$$

# 28. Question

Differentiate the following functions with respect to x:

$$\frac{x^n}{\sin x}$$

#### Answer

Let, 
$$y = \frac{x^n}{\sin x}$$

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

$$u = x^n$$
 and  $v = sin x$ 

 $\therefore y = u/v$ 

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation.

CLICK HERE

>>

R www.studentbro.in

By quotient rule, we have -

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} \dots \text{equation 1}$$
As,  $u = x^n$ 

$$\therefore \frac{d}{dx} (x^n) = nx^{n-1}, \text{ so we get -}$$

$$\therefore \frac{du}{dx} = \frac{d}{dx} (x^n) = nx^{n-1} \dots \text{equation 2}$$
As,  $v = \sin x$ 

$$\therefore \frac{d}{dx} (\sin x) = \cos x, \text{ so we get -}$$

$$\therefore \frac{dv}{dx} = \frac{d}{dx} (\sin x) = \cos x \dots \text{equation 3}$$

 $\div$  from equation 1, we can find dy/dx

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

using equation 2 and 3, we get -

$$\Rightarrow \frac{dy}{dx} = \frac{\sin x (nx^{n-1}) - (x^n)(\cos x)}{\sin^2 x}$$

Hence,

 $\frac{dy}{dx} = \frac{\sin x \left(nx^{n-1}\right) - (x^n)(\cos x)}{\sin^2 x} \dots \text{ ans}$ 

# 29. Question

Differentiate the following functions with respect to x:

$$\frac{\mathbf{a}\mathbf{x} + \mathbf{b}}{\mathbf{p}\mathbf{x}^2 + \mathbf{q}\mathbf{x} + \mathbf{r}}$$

Answer

Let, 
$$y = \frac{ax+b}{px^2 + qx + r}$$

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

$$u = ax + b and v = px^2 + qx + r$$

 $\therefore y = u/v$ 

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation.

By quotient rule, we have -

$$\frac{dy}{dx} = \frac{d}{dx} \left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} \dots \text{equation 1}$$
As,  $u = ax + b$ 

$$\therefore \frac{du}{dx} = a \dots \text{equation 2} \{\because \frac{d}{dx}(x^n) = nx^{n-1}\}$$
As,  $v = px^2 + qx + r$ 

$$\therefore \frac{d}{dx}(x^n) = nx^{n-1}, \text{ so we get } -$$

$$\therefore \frac{dv}{dx} = \frac{d}{dx}(px^2 + qx + r) = 2px + q \dots \text{equation 3}$$

$$\therefore \text{ from equation 1, we can find dy/dx}$$

$$\therefore \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$\frac{dv}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{(px + qx + 1)(a) - (ax + b)(2px + q)}{(px^2 + qx + r)^2} \text{ {using equation 2 and 3 }}$$

$$\Rightarrow \frac{dy}{dx} = \frac{(apx^2 + aqx + ar) - 2apx^2 - aqx - 2bpx - bq}{(px^2 + qx + r)^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{-apx^2 - 2bpx + ar - bq}{(px^2 + qx + r)^2}$$

 $\frac{dy}{dx} = \frac{-apx^2 - 2bpx + ar - bq}{(px^2 + qx + r)^2} \dots ans$ 

# 30. Question

Differentiate the following functions with respect to x:

$$\frac{1}{ax^2 + bx + c}$$

# Answer

Let,  $y = \frac{1}{ax^2 + bx + c}$ 

We have to find dy/dx

As we can observe that y is a fraction of two functions say u and v where,

$$u = 1$$
 and  $v = ax^2 + bx + c$ 

∴ y = u/v

As we know that to find the derivative of fraction of two function we apply quotient rule of differentiation.





By quotient rule, we have -

$$\begin{array}{l} \frac{dy}{dx} = \frac{d}{dx} \begin{pmatrix} u \\ v \end{pmatrix} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \dots \text{equation 1} \\\\ \text{As, } u = 1 \\\\ \therefore \frac{du}{dx} = 0 \dots \text{equation 2} \{ \because \frac{d}{dx} (x^n) = nx^{n-1} \} \\\\ \text{As, } v = ax^2 + bx + c \\\\ \because \frac{d}{dx} (x^n) = nx^{n-1} \text{, so we get -} \\\\ \therefore \frac{dv}{dx} = \frac{d}{dx} (ax^2 + bx + c) = 2ax + b \dots \text{equation 3} \end{array}$$

 $\therefore$  from equation 1, we can find dy/dx

Hence,

 $\frac{\mathrm{dy}}{\mathrm{dx}} = -\frac{(2\mathrm{ax} + \mathrm{b})}{(\mathrm{ax}^2 + \mathrm{bx} + \mathrm{c})^2} \dots \mathrm{ans}$ 

# **Very Short Answer**

# 1. Question

Write the value of  $\lim_{x\to c} \frac{f(x) - f(c)}{x - c}$ 

#### Answer

By definition of derivative we know that derivative of a function at a given real number say c is given by:

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

 $\therefore$  as per the definition of derivative of a function at a given real number we can say that –

 $\lim_{x\to c} \frac{f(x)-f(c)}{x-c} = f'(c)$ 

# 2. Question

Write the value of  $\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$ 

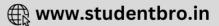
#### Answer

By definition of derivative we know that derivative of a function at a given real number say c is given by :

$$\begin{aligned} f'(c) &= \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \\ \\ \text{let } Z &= \lim_{x \to a} \frac{xf(a) - af(x)}{x - a} \end{aligned}$$

If somehow we got a form similar to that of in definition of derivative we can write it in a simpler form.





 $\therefore Z = \lim_{x \to a} \frac{(x-a)f(a)-af(x)+af(a)}{x-a} \{adding \& subtracting af(a) in numerator\}$ 

 $\Rightarrow \mathsf{Z} = \lim_{x \to a} \frac{(x-a)f(a)}{x-a} - a \lim_{x \to a} \frac{f(x)-f(a)}{x-a} \text{ {using algebra of limits}}$ 

Using the definition of the derivative , we have -

 $\Rightarrow Z = \lim_{x \to a} f(a) - af'(a)$  $\therefore Z = f(a) - a f'(a)$ 

### 3. Question

If x < 2, then write the value of 
$$\frac{d}{dx} \left( \sqrt{x^2 - 4x + 4} \right)$$

#### Answer

Let  $y = \sqrt{x^2 - 4x + 4}$ 

Now,

$$\frac{dy}{dx} = \frac{1}{\sqrt{x^2 - 4x + 4}} \times \frac{d}{dx} (x^2 - 4x + 4)$$
$$\frac{dy}{dx} = \frac{1}{\sqrt{x^2 - 4x + 4}} \times (2x - 4)$$

From above,

 $x^{2} - 4x + 4 > 0$  $(x - 2)^{2} > 0$ x > 2

But x < 2. Therefore,  $\frac{dy}{dx}$  does not exist for the given function.

# 4. Question

If 
$$\frac{\pi}{2} < x < \pi$$
, then find  $\frac{d}{dx} \left( \sqrt{\frac{1 + \cos 2x}{2}} \right)$ 

#### Answer

As we know that  $1 + \cos 2x = 2\sin^2 x$ 

As,  $\pi/2 < x < \pi$ 

 $\therefore$  sin x will be positive.

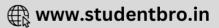
Let  $Z = \frac{d}{dx} \left( \sqrt{\frac{1 + \cos 2x}{2}} \right)$  $\Rightarrow Z = \frac{d}{dx} \left( \sqrt{\frac{2 \sin^2 x}{2}} \right)$ 

 $\Rightarrow$  Z =  $\frac{d}{dx}(|\sin x|)$  { as we need to consider positive square root}

∵ sin x is positive

$$\therefore Z = \frac{d}{dx}(\sin x)$$

We know that differentiation of sin x is cos x



Hence,

 $Z = \cos x$ 

# 5. Question

Write the value of 
$$\frac{d}{dx}(x \,|\, x \,|)$$

#### Answer

As we need to differentiate f(x) = x |x|

We know the property of mod function that

$$|\mathbf{x}| = \begin{cases} -x, x < 0\\ x, x \ge 0 \end{cases}$$
  
$$\therefore \mathbf{f}(\mathbf{x}) = \mathbf{x} |\mathbf{x}| = \begin{cases} -x^2, x < 0\\ x^2, x \ge 0 \end{cases}$$

Hence,

$$\frac{d}{dx}(f(x)) = \begin{cases} \frac{d}{dx}(-x^2), x < 0\\ \frac{d}{dx}(x^2), x \ge 0 \end{cases}$$

$$As \frac{d}{dx}(x^n) = nx^{n-1}$$

$$\therefore \frac{d}{dx}(x|x|) = \begin{cases} -2x, x < 0\\ 2x, x \ge 0 \end{cases}$$

#### 6. Question

Write the value of 
$$\frac{d}{dx} \{ (x+|x|) |x| \}$$

#### Answer

As we need to differentiate f(x) = (x+|x|)|x|

We know the property of a mod function that

$$\begin{aligned} |\mathbf{x}| &= \begin{cases} -\mathbf{x}, \mathbf{x} < 0\\ \mathbf{x}, \mathbf{x} \ge 0 \end{cases} \\ \therefore \mathbf{f}(\mathbf{x}) &= (\mathbf{x} + |\mathbf{x}|) |\mathbf{x}| = \begin{cases} (\mathbf{x} + (-\mathbf{x}))(-\mathbf{x}) = 0, \mathbf{x} < 0\\ (\mathbf{x} + \mathbf{x})\mathbf{x} = 2\mathbf{x}^2, \mathbf{x} \ge 0 \end{cases} \end{aligned}$$

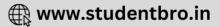
Hence,

$$\frac{d}{dx}(f(x)) = \begin{cases} \frac{d}{dx}(0), x < 0\\ \frac{d}{dx}(2x^2), x \ge 0 \end{cases}$$
  
As  $\frac{d}{dx}(x^n) = nx^{n-1}$   
 $\therefore \frac{d}{dx}\{(x+|x|)|x|\} = \begin{cases} 0, x < 0\\ 4x, x \ge 0 \end{cases}$ 

# 7. Question

If f(x) = |x| + |x - 1|, write the value of  $\frac{d}{dx}(f(x))$ .





#### Answer

As we need to differentiate f(x) = |x| + |x - 1|

We know the property of mod function that-

$$\begin{aligned} |\mathbf{x}| &= \begin{cases} -\mathbf{x}, \mathbf{x} < 0\\ \mathbf{x}, \mathbf{x} \ge 0 \end{cases} \\ &\stackrel{\cdot}{\cdot} \mathbf{f}(\mathbf{x}) = |\mathbf{x}| + |\mathbf{x} - 1| = \begin{cases} \mathbf{x} + \mathbf{x} - 1 = 2\mathbf{x} - 1, \mathbf{x} \ge 1\\ \mathbf{x} + \{-(\mathbf{x} - 1)\} = 1, 0 < \mathbf{x} < 1\\ -\mathbf{x} - (\mathbf{x} - 1)\} = -2\mathbf{x} + 1, \mathbf{x} \le 0 \end{aligned}$$
  
$$\stackrel{\cdot}{\cdot} \mathbf{f}(\mathbf{x}) = \begin{cases} 2\mathbf{x} - 1, \mathbf{x} \ge 1\\ 1, 0 < \mathbf{x} < 1\\ -2\mathbf{x} + 1, \mathbf{x} \le 0 \end{cases}$$

Hence,

$$\frac{d}{dx}(f(x)) = \begin{cases} \frac{d}{dx}(2x-1), x \ge 1\\ \frac{d}{dx}(1), 0 < x < 1\\ \frac{d}{dx}(-2x+1), x \le 0 \end{cases}$$
As  $\frac{d}{dx}(x^n) = nx^{n-1}$ 

$$\dot{\ } \frac{d}{dx} \{ f(x) \} = \begin{cases} 2, x \ge 1 \\ 0, 0 < x < 1 \\ -2, x \le 0 \end{cases}$$

### 8. Question

Write the value of the derivation of f(x) = |x - 1| + |x - 3| at x = 2.

#### Answer

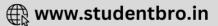
As we need to differentiate f(x) = |x - 3| + |x - 1|

We know the property of a mod function that-

$$\begin{aligned} |\mathbf{x}| &= \begin{cases} -x, x < 0\\ x, x \ge 0 \end{cases} \\ &\therefore f(\mathbf{x}) = |\mathbf{x} - 3| + |\mathbf{x} - 1| = \begin{cases} x - 3 + x - 1 = 2x - 4, x \ge 3\\ -x + 3 + \{(x - 1)\} = 2, 1 < x < 3\\ -x + 3 - (x - 1)\} = -2x + 4, x \le 1 \end{aligned} \\ &\therefore f(\mathbf{x}) = \begin{cases} 2x - 4, x \ge 3\\ 2, 1 < x < 3\\ -2x + 4, x \le 1 \end{cases} \end{aligned}$$

Hence,

$$\begin{split} \frac{d}{dx}\big(f(x)\big) &= \begin{cases} \frac{d}{dx}(2x-4)\,, x \geq 3\\ \frac{d}{dx}(2)\,, 1 < x < 3\\ \frac{d}{dx}(-2x+4)\,, x \leq 1 \end{cases}\\ & \text{As } \frac{d}{dx}(x^n) = nx^{n-1}\\ & \therefore \frac{d}{dx}\{f(x)\} = \begin{cases} 2\,, x \geq 3\\ 0\,, 1 < x < 3\\ -2\,, x \leq 1 \end{cases} \end{split}$$



From above equation, we can say that

value of derivative at x = 2 is  $0 \Rightarrow f'(2) = 0$ 

# 9. Question

If 
$$f(x) = \frac{x^2}{|x|}$$
, write  $\frac{d}{dx}(f(x))$ 

### Answer

As we need to differentiate  $f(x) = \frac{x^2}{|x|}$ 

We know the property of mod function that

$$|\mathbf{x}| = \begin{cases} -x, x < 0\\ x, x \ge 0 \end{cases}$$
  
$$\therefore \mathbf{f}(\mathbf{x}) = \frac{x^2}{|\mathbf{x}|} = \begin{cases} \frac{x^2}{-x} = -x, x < 0\\ \frac{x^2}{-x} = x, x > 0 \end{cases}$$

Hence,

$$\frac{d}{dx}(f(x)) = \begin{cases} \frac{d}{dx}(-x), x < 0\\ \frac{d}{dx}(x), x > 0 \end{cases}$$
As  $\frac{d}{dx}(x^n) = nx^{n-1}$   
 $\therefore \frac{d}{dx}\{f(x)\} = \begin{cases} -1, x < 0\\ 1, x > 0 \end{cases}$ 

Note: f(x) is not differentiable at x = 0 because left hand derivative of f(x) is not equal to right hand derivative at x = 0

#### 10. Question

Write the value of  $\frac{d}{dx}(\log |x|)$ 

#### Answer

As we need to differentiate  $f(x) = \log |x|$ 

We know the property of a mod function that

$$|\mathbf{x}| = \begin{cases} -\mathbf{x}, \mathbf{x} < \mathbf{0} \\ \mathbf{x}, \mathbf{x} \ge \mathbf{0} \end{cases}$$

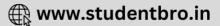
$$\label{eq:fx} \dot{\ } f(x) = \log |x| = \begin{cases} \log(-x) \ , x < 0 \\ \log x \ , x > 0 \end{cases}$$

Note: log x is not defined at x = 0. So its derivative at x = 0 also does not exist.

Hence,

$$\frac{d}{dx}(f(x)) = \begin{cases} \frac{d}{dx}(\log(-x)), x < 0\\ \frac{d}{dx}(\log x), x > 0 \end{cases}$$
As  $\frac{d}{dx}(\log x) = \frac{1}{x}$ 





$$\frac{d}{dx} \{f(x)\} = \begin{cases} -\frac{1}{x}, x < 0\\ \frac{1}{x}, x > 0 \end{cases}$$

# 11. Question

If f(1) = 1, f'(1) = 2, then write the value of  $\lim_{x \to 1} \frac{\sqrt{f(x)} - 1}{\sqrt{x} - 1}$ 

# Answer

By definition of derivative we know that derivative of a function at a given real number say c is given by :

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$
$$let Z = \lim_{x \to 1} \frac{\sqrt{f(x)} - 1}{\sqrt{x} - 1}$$

As Z is taking 0/0 form because f(1) = 1

So on rationalizing the Z, we have-

$$Z = \lim_{x \to 1} \frac{\sqrt{f(x)}{\sqrt{x}-1}}{\sqrt{x}-1} \times \frac{\sqrt{f(x)}+1}{\sqrt{f(x)}+1} \times \frac{\sqrt{x}+1}{\sqrt{x}+1}$$
  

$$\Rightarrow Z = \lim_{x \to 1} \frac{\left\{ \left(\sqrt{f(x)}\right)^2 - 1^2 \right\} \left(\sqrt{x}+1\right)}{\left(\sqrt{f(x)}+1\right) \left(\left(\sqrt{x}\right)^2 - 1^2\right)} \left\{ \text{using } a^2 - b^2 = (a+b)(a-b) \right\}$$
  

$$\Rightarrow Z = \lim_{x \to 1} \frac{\left\{ f(x) - 1 \right\} \left(\sqrt{x}+1\right)}{\left(\sqrt{f(x)}+1\right) \left(x-1\right)}$$

Using algebra of limits, we have -

$$Z = \lim_{x \to 1} \frac{\{f(x)-1\}}{(x-1)} \times \lim_{x \to 1} \frac{(\sqrt{x}+1)}{(\sqrt{f(x)}+1)}$$

Using the definition of the derivative, we have -

$$Z = f'(1) \times \frac{(\sqrt{1}+1)}{(\sqrt{f(1)}+1)}$$

 $\Rightarrow$  Z = 2 × (2/2) = 2 {using values given in equation}

∴ Z = 2

# 12. Question

Write the derivation of f(x) = 3|2 + x| at x = -3.

#### Answer

As we need to differentiate f(x) = 3|2+x|

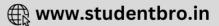
We know the property of a mod function that

 $|x| = \begin{cases} -x, x < 0 \\ x, x \ge 0 \end{cases}$ 

$$f(x) = 3|2 + x| = \begin{cases} 3(2 - x) = 6 - 3x, x < -2\\ (2 + x)3 = 6 + 3x, x \ge -2 \end{cases}$$

Hence,

$$\frac{\mathrm{d}}{\mathrm{dx}}(f(x)) = \begin{cases} \frac{\mathrm{d}}{\mathrm{dx}}(6-3x), x < -2\\ \frac{\mathrm{d}}{\mathrm{dx}}(6+3x), x \ge -2 \end{cases}$$



As 
$$\frac{d}{dx}(x^n) = nx^{n-1}$$
  
 $\therefore \frac{d}{dx}{f(x)} = \begin{cases} -3, x < -2\\ 3, x \ge -2 \end{cases}$ 

Clearly form the above equation we can say that,

Value of derivative at x = -3 is -3 i.e. f'(-3) = -3

# 13. Question

If |x| < 1 and  $y = 1 + x + x^2 + x^3 + \dots$ , then write the value of  $\frac{dy}{dx}$ .

# Answer

As |x| < 1

And  $y = 1 + x + x^2 + \dots$  (this is an infinite G.P with common ratio x)

∵ |x|<1

 $\therefore$  using the formula for sum of infinite G.P,we have-

$$y = \frac{1}{1-x}$$

We know that f'(ax+b) = af'(x)

As 
$$\frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2}$$

But here a = -1 and b = 1

$$\therefore \frac{dy}{dx} = \frac{d}{dx} \left( \frac{1}{1-x} \right) = \frac{1}{(1-x)^2}$$

# 14. Question

If  $f(x) = \log_{x^2} x^3$ , write the value of f'(x).

# Answer

Given,

 $f(x) = \log_{x^2} x^3$ 

Applying change of base formula, we have -

$$f(x) = \frac{\log_e x^3}{\log_e x^2} = \frac{3\log_e x}{2\log_e x} = \frac{3}{2} \{\text{using properties of log}\}$$

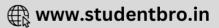
As differentiation of constant term is 0

$$\therefore$$
 f'(x) = 0

# MCQ

# 1. Question

Let 
$$f(x) = x - [x], x \in \mathbb{R}$$
, then  $f'\left(\frac{1}{2}\right)$  is  
A.  $\frac{3}{2}$   
B. 1



C. 0

D. -1

# Answer

As we need to differentiate f(x) = x - [x]

We know the property of greatest integer function that

$$F'(x) = 1 - \frac{d}{dx}[x]$$
  
 $F'(x) = 1 - 0 = 1$ 

 $\therefore$  option ( b ) is correct answer.

# 2. Question

If 
$$f(x) = \frac{x-4}{2\sqrt{x}}$$
, then f'(1) is  
A.  $\frac{5}{4}$   
B.  $\frac{4}{5}$   
C. 1  
D. 0

# Answer

As, f(x) = 
$$\frac{x-4}{2\sqrt{x}} = \frac{1}{2} \left\{ \frac{x}{\sqrt{x}} - \frac{4}{\sqrt{x}} \right\} = \frac{1}{2} \left\{ x^{\frac{1}{2}} - 4x^{-\frac{1}{2}} \right\}$$

We know that,

$$\frac{d}{dx}(x^{n}) = nx^{n-1}$$
  

$$\therefore f'(x) = \frac{d}{dx}(f(x)) = \frac{1}{2}\frac{d}{dx}(x^{\frac{1}{2}} - 4x^{-\frac{1}{2}})$$
  

$$\Rightarrow f'(x) = \frac{1}{2}\left\{\frac{d}{dx}(x^{\frac{1}{2}}) - 4\frac{d}{dx}(x^{-\frac{1}{2}})\right\} = \frac{1}{2}\left\{\frac{1}{2}x^{-\frac{1}{2}} - 4\left(-\frac{1}{2}\right)x^{-\frac{1}{2}-1}\right\}$$
  

$$\Rightarrow f'(x) = \frac{1}{2}\left\{\frac{1}{2}x^{-\frac{1}{2}} + 2x^{-\frac{3}{2}}\right\}$$
  

$$\therefore f'(1) = \frac{1}{2}\left\{\frac{1}{2}(1)^{-\frac{1}{2}} + 2(1)^{-\frac{3}{2}}\right\} = \frac{1}{2}\left\{\frac{1}{2} + 2\right\} = \frac{5}{4}$$
  

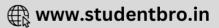
$$\therefore f'(1) = \frac{5}{4}$$

Clearly from above calculation only 1 answer is possible which is 5/4

 $\div$  option (a) is the only correct answer.

# 3. Question

If 
$$y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$
, then  $\frac{dy}{dx}$   
A. y + 1  
B. y - 1  
C. y



D. y<sup>2</sup>

# Answer

As, 
$$y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

We know that,

$$\frac{d}{dx}(x^{n}) = nx^{n-1}$$
  
$$\therefore \frac{dy}{dx} = \frac{d}{dx}(1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots)$$
  
$$\Rightarrow \frac{dy}{dx} = \frac{d}{dx}(1) + \frac{d}{dx}\left(\frac{x}{1!}\right) + \frac{d}{dx}\left(\frac{x^{2}}{2!}\right) + \dots$$
  
$$\Rightarrow \frac{dy}{dx} = 0 + 1 + \frac{2x}{2!} + \frac{3x^{2}}{3!} + \dots$$
  
$$\Rightarrow \frac{dy}{dx} = 1 + \frac{x}{1} + \frac{x^{2}}{2!} + \dots$$

Clearly, in comparison with y, we can say that-

$$\frac{\mathrm{d}y}{\mathrm{d}x} = y$$

Hence,

Option (c) is the only correct answer.

# 4. Question

If  $f(x) = 1 - x + x^2 - x^3 + \dots - x^{99} + x^{100}$ , then f'(1) equals

A. 150

B. -50

C. -150

D. 50

# Answer

As,  $f(x) = 1 - x + x^2 - x^3 + \dots - x^{99} + x^{100}$ 

We know that,

$$\frac{d}{dx}(x^{n}) = nx^{n-1}$$

$$\therefore \frac{dy}{dx} = \frac{d}{dx}(1 - x + x^{2} - x^{3} + \dots - x^{99} + x^{100})$$

$$\Rightarrow \frac{dy}{dx} = \frac{d}{dx}(1) - \frac{d}{dx}(x) + \frac{d}{dx}(x^{2}) - \frac{d}{dx}(x^{3}) \dots - \frac{d}{dx}(x^{99}) + \frac{d}{dx}(x^{100})$$

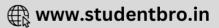
$$\Rightarrow \frac{dy}{dx} = 0 - 1 + 2x - 3x^{2} + \dots - 99x^{98} + 100x^{99}$$

$$\Rightarrow f'(1) = -1 + 2 - 3 + \dots - 99 + 100$$

$$\Rightarrow f'(1) = (2 + 4 + 6 + 8 + \dots + 98 + 100) - (1 + 3 + 5 + \dots + 97 + 99)$$
Both terms have 50 terms  
We know that sum of n terms of an A.P =  $\frac{n}{2}(a_{1} + a_{n})$   

$$\therefore f'(1) = \frac{50}{2}(2 + 100) - \frac{50}{2}(1 + 99) = 25(102 - 100) = 50$$

Get More Learning Materials Here :



Clearly above solution suggests that only 1 result is possible which is 50.

Hence,

Only option (d) is the correct answer.

# 5. Question

If 
$$y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}$$
, then  $\frac{dy}{dx} =$   
A.  $-\frac{4x}{(x^2 - 1)^2}$   
B.  $-\frac{4x}{x^2 - 1}$   
C.  $\frac{1 - x^2}{4x}$   
D.  $\frac{4x}{x^2 - 1}$ 

# Answer

As  $y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}} = \frac{x^2 + 1}{x^2 - 1}$ 

To calculate dy/dx, we can use the quotient rule.

From quotient rule we know that  $:\frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$  $\therefore \frac{dy}{dx} = \frac{d}{dx} \left( \frac{x^2 + 1}{x^2 - 1} \right) = \frac{(x^2 - 1) \frac{d}{dx} (x^2 + 1) - (x^2 + 1) \frac{d}{dx} (x^2 - 1)}{(x^2 - 1)^2}$ We know that,  $\frac{d}{dx} (x^n) = nx^{n-1}$  $\Rightarrow \frac{dy}{dx} = \frac{(x^2 - 1)(2x) - (x^2 + 1)(2x)}{(x^2 - 1)^2} = \frac{2x(x^2 - 1 - x^2 - 1)}{(x^2 - 1)^2}$ 

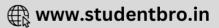
$$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{-4\mathrm{x}}{(\mathrm{x}^2 - 1)^2}$$

Clearly, from above solution we can say that option (a) is the only correct answer.

# 6. Question

If 
$$y = \sqrt{x} + \frac{1}{\sqrt{x}}$$
, then  $\frac{dy}{dx}$  at  $x = 1$  is  
A. 1  
B.  $\frac{1}{2}$   
C.  $\frac{1}{\sqrt{2}}$   
D. 0





#### Answer

As, 
$$y = \sqrt{x} + \frac{1}{\sqrt{x}}$$
  
 $\Rightarrow y = x^{1/2} + x^{-1/2}$   
We know that:  $\frac{d}{dx}(x^n) = nx^{n-1}$   
 $\therefore \frac{dy}{dx} = \frac{d}{dx}(x^{\frac{1}{2}}) + \frac{d}{dx}(x^{-\frac{1}{2}})$   
 $\Rightarrow \frac{dy}{dx} = \frac{1}{2}x^{\frac{1}{2}-1} - \frac{1}{2}x^{-\frac{1}{2}-1} = \frac{1}{2}(x^{-\frac{1}{2}} - x^{-\frac{3}{2}})$   
 $\therefore (\frac{dy}{dx})_{at x=1} = \frac{1}{2}(1^{-\frac{1}{2}} - 1^{-\frac{3}{2}}) = 0$ 

Clearly, only option (d) matches with our result.

 $\therefore$  option (d) is the only correct choice.

### 7. Question

If  $f(x) = x^{100} + x^{99} + \dots + x + 1$ , then f'(1) is equal to

- A. 5050
- B. 5049
- C. 5051
- D. 50051

# Answer

As,  $f(x) = 1 + x + x^2 + x^3 + \dots + x^{99} + x^{100}$ 

We know that,

$$\begin{aligned} \frac{d}{dx}(x^{n}) &= nx^{n-1} \\ \therefore \frac{dy}{dx} &= \frac{d}{dx}(1 + x + x^{2} + x^{3} + \dots + x^{99} + x^{100}) \\ \Rightarrow \frac{dy}{dx} &= \frac{d}{dx}(1) + \frac{d}{dx}(x) + \frac{d}{dx}(x^{2}) + \frac{d}{dx}(x^{3}) \dots + \frac{d}{dx}(x^{99}) + \frac{d}{dx}(x^{100}) \\ \Rightarrow \frac{dy}{dx} &= 0 + 1 + 2x + 3x^{2} + \dots + 99x^{98} + 100x^{99} \\ \Rightarrow f'(1) &= 1 + 2 + 3 + \dots + 99 + 100 \text{ (total 100 terms)} \end{aligned}$$
  
We know that sum of n terms of an A.P =  $\frac{n}{2}(a_{1} + a_{n})$ 

$$\therefore f'(1) = \frac{100}{2}(1+100) = 50(100+1) = 50 \times 101 = 5050$$

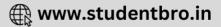
Clearly, the above solution suggests that only 1 result is possible which is 5050.

# Hence,

The only option (a) is the correct answer.

# 8. Question

If 
$$f(x) = 1 + x + \frac{x^2}{2} + \dots + \frac{x^{100}}{100}$$
, then f'(1) is equal to



A. 
$$\frac{1}{100}$$

B. 100

C. 50

D. 0

.

# Answer

As,  $y = 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^{100}}{100}$ 

We know that,

$$\begin{aligned} \frac{d}{dx}(x^{n}) &= nx^{n-1} \\ \therefore \frac{dy}{dx} &= f'(x) = \frac{d}{dx}(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\dots+\frac{x^{100}}{100}) \\ \Rightarrow f'(x) &= \frac{d}{dx}(1) + \frac{d}{dx}(x) + \frac{d}{dx}\left(\frac{x^{2}}{2}\right) + \dots + \frac{d}{dx}\left(\frac{x^{100}}{100}\right) \\ \Rightarrow f'(x) &= 0 + 1 + \frac{2x}{2} + \frac{3x^{2}}{3} + \dots + \frac{100x^{99}}{100} \\ \Rightarrow f'(x) &= 1 + x + x^{2} + \dots + x^{99} \\ \Rightarrow f'(1) &= 1 + 1 + 1 + \dots + 1 (100 \text{ terms}) = 100 \end{aligned}$$

Clearly above solution suggests that only 1 result is possible which is 100.

Hence,

Only option (b) is the correct answer.

# 9. Question

If 
$$y = \frac{\sin x + \cos x}{\sin x - \cos x}$$
, then  $\frac{dy}{dx}at x = 0$  is

A. -2

B. 0

C. 1/2

D. does not exist

# Answer

As  $y = \frac{\sin x + \cos x}{\sin x - \cos x}$ 

To calculate dy/dx, we can use the quotient rule.

From quotient rule we know that  $:\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}$ 

$$\frac{dy}{dx} = \frac{d}{dx} \left( \frac{\sin x + \cos x}{\sin x - \cos x} \right) = \frac{(\sin x - \cos x) \frac{d}{dx} (\sin x + \cos x) - (\sin x + \cos x) \frac{d}{dx} (\sin x - \cos x)}{(\sin x - \cos x)^2}$$

We know that, 
$$\frac{d}{dx}(\sin x) = \cos x \& \frac{d}{dx}(\cos x) = -\sin x$$

$$\Rightarrow \frac{dy}{dx} = \frac{(\sin x - \cos x)(\cos x - \sin x) - (\sin x + \cos x)(\cos x + \sin x)}{(\sin x - \cos x)^2}$$

Get More Learning Materials Here : 💻

# Regional www.studentbro.in

$$\Rightarrow \frac{dy}{dx} = \frac{-(\sin x - \cos x)^2 - (\sin x + \cos x)^2}{(\sin x - \cos x)^2}$$
$$\therefore \left(\frac{dy}{dx}\right)_{at \ x=0} = \frac{-(\sin 0 - \cos 0)^2 - (\sin 0 + \cos 0)^2}{(\sin 0 - \cos 0)^2} = \frac{-1 - 1}{1} = -2$$
$$\Rightarrow \frac{dy}{dx} = -2$$

# **10. Question**

If 
$$y = \frac{\sin(x+9)}{\cos x}$$
, then  $\frac{dy}{dx}$  at  $x = 0$  is

A. cos 9

B. sin 9

C. 0

D. 1

# Answer

$$y = \frac{\sin(x+9)}{\cos x}$$

From quotient rule we know that  $:\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}$ 

Differentiating, we get,

$$\frac{dy}{dx} = \frac{\cos x \cos (x+9) + \sin x \sin (x+9)}{(\cos x)^2}$$

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)$$
 at  $(x = 0) = \cos 9$ 

Hence, a is the answer.

# 11. Question

If 
$$f(x) = \frac{x^n - a^n}{x - a}$$
, then f'(a) is

A. 1

B. 0

c.  $\frac{1}{2}$ 

D. does not exist

#### Answer

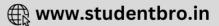
As,  $f(x) = \frac{x^n - a^n}{x - a}$ 

To calculate dy/dx we can use quotient rule.

From quotient rule we know that  $:\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}$ 

$$\stackrel{\cdot\cdot}{\cdot} f'(x) = \frac{d}{dx} \left( \frac{x^n - a^n}{x - a} \right) = \frac{(x - a) \frac{d}{dx} (x^n - a^n) - (x^n - a^n) \frac{d}{dx} (x - a)}{(x - a)^2}$$

We know that,  $\frac{d}{dx}(x^n) = nx^{n-1}$ 



$$\Rightarrow f'(x) = \frac{(x-a)(nx^{n-1}) - (x^n - a^n)(1)}{(x-a)^2}$$
  

$$\because x - a \text{ is a factor of } x^{n} - a^n, \text{ we can write:}$$
  

$$x^n - a^n = (x-a)(x^{n-1} + ax^{n-2} + a^2x^{n-3} + \dots + a^{n-1})$$
  

$$\Rightarrow f'(x) = \frac{(x-a)(nx^{n-1}) - (x-a)(x^{n-1} + ax^{n-2} + \dots + a^{n-1})(1)}{(x-a)^2}$$
  

$$\Rightarrow f'(x) = \frac{(x-a)\{(nx^{n-1}) - (x^{n-1} + ax^{n-2} + \dots + a^{n-1})\}}{(x-a)^2}$$
  

$$\Rightarrow f'(x) = \frac{\{(nx^{n-1}) - (x^{n-1} + ax^{n-2} + \dots + a^{n-1})\}}{x-a}$$
  

$$\therefore f'(a) = \frac{\{(na^{n-1}) - (a^{n-1} + axa^{n-2} + \dots + a^{n-1})\}}{a-a}$$
  

$$\Rightarrow f'(a) = \frac{\{(na^{n-1}) - (a^{n-1} + axa^{n-2} + \dots + a^{n-1})\}}{0} = \text{does not exist}$$

Clearly form above solution we can say that option (d) is the only correct answer.

### 12. Question

If  $f(x) = x \sin x$ , then  $f'(\pi/2) =$ 

B. 1

C. -1

D.  $\frac{1}{2}$ 

#### Answer

As,  $f(x) = x \sin x$ 

To calculate dy/dx we can use product rule.

From quotient rule we know that  $:\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$ 

$$\cdot \cdot f'(x) = \frac{d}{dx}(x\sin x) = x\frac{d}{dx}(\sin x) + \sin x\frac{d}{dx}(x)$$

We know that,  $\frac{d}{dx}(x^n) = nx^{n-1} \& \frac{d}{dx}(\sin x) = \cos x$ 

 $\Rightarrow$  f'(x) = x cos x + sin x

$$\therefore f'\left(\frac{\pi}{2}\right) = \left(\frac{\pi}{2}\right)\cos\frac{\pi}{2} + \sin\frac{\pi}{2} = 0 + 1 = 1$$

Clearly form above solution we can say that option (b) is the only correct answer as the solution has only1 possible answer which matches with option (b) only.

